scholarly journals Reduction in Oxidative Stress by Superoxide Dismutase Overexpression Attenuates Acute Brain Injury after Subarachnoid Hemorrhage via Activation of Akt/Glycogen Synthase Kinase-3β Survival Signaling

2006 ◽  
Vol 27 (5) ◽  
pp. 975-982 ◽  
Author(s):  
Hidenori Endo ◽  
Chikako Nito ◽  
Hiroshi Kamada ◽  
Fengshan Yu ◽  
Pak H Chan
2019 ◽  
Vol 36 (11) ◽  
pp. 1869-1875 ◽  
Author(s):  
Susan A. Farr ◽  
Michael L. Niehoff ◽  
Vijaya B. Kumar ◽  
Deborah A. Roby ◽  
John E. Morley

2018 ◽  
Vol 315 (5) ◽  
pp. H1127-H1136 ◽  
Author(s):  
Qing Qin ◽  
Hemal Mehta ◽  
Kelvin Yen ◽  
Gerardo Navarrete ◽  
Sebastian Brandhorst ◽  
...  

Cardiac fibrosis is a biological process that increases with age and contributes to myocardial dysfunction. Humanin (HN) is an endogenous mitochondria-derived peptide that has cytoprotective effects and reduces oxidative stress. The present study aimed to test the hypothesis that chronic supplementation of exogenous HN in middle-aged mice could prevent and reverse cardiac fibrosis and apoptosis in the aging heart. Female C57BL/6N mice at 18 mo of age received 14-mo intraperitoneal injections of vehicle (old group; n = 6) or HN analog (HNG; 4 mg/kg 2 times/wk, old + HNG group, n = 8) and were euthanized at 32 mo of age. C57BL/6N female mice (young group, n = 5) at 5 mo of age were used as young controls. HNG treatment significantly increased the ratio of cardiomyocytes to fibroblasts in aging hearts, as shown by the percentage of each cell type in randomly chosen fields after immunofluorescence staining. Furthermore, the increased collagen deposition in aged hearts was significantly reduced after HNG treatment, as indicated by picrosirius red staining. HNG treatment also reduced in aging mice cardiac fibroblast proliferation (5′-bromo-2-deoxyuridine staining) and attenuated transforming growth factor-β1, fibroblast growth factor-2, and matrix metalloproteinase-2 expression (immunohistochemistry or real-time PCR). Myocardial apoptosis was inhibited in HNG-treated aged mice (TUNEL staining). To decipher the pathway involved in the attenuation of the myocardial fibrosis by HNG, Western blot analysis was done and showed that HNG upregulated the Akt/glycogen synthase kinase -3β pathway in aged mice. Exogenous HNG treatment attenuated myocardial fibrosis and apoptosis in aged mice. The results of the present study suggest a role for the mitochondria-derived peptide HN in the cardioprotection associated with aging. NEW & NOTEWORTHY Cardiac fibrosis is a biological process that increases with age and contributes to myocardial dysfunction. Humanin is an endogenous mitochondria-derived peptide that has cytoprotective effects and reduces oxidative stress. Here, we demonstrate, for the first time, that exogenous humanin treatment attenuated myocardial fibrosis and apoptosis in aging mice. We also detected upregulated Akt/glycogen synthase kinase-3β pathway in humanin analog-treated mice, which might be the mechanism involved in the cardioprotective effect of humanin analog in aging mice.


Stroke ◽  
2006 ◽  
Vol 37 (8) ◽  
pp. 2140-2146 ◽  
Author(s):  
Hidenori Endo ◽  
Chikako Nito ◽  
Hiroshi Kamada ◽  
Fengshan Yu ◽  
Pak H. Chan

2021 ◽  
Vol 10 (6) ◽  
pp. 1188
Author(s):  
Harald Krenzlin ◽  
Dominik Wesp ◽  
Jan Schmitt ◽  
Christina Frenz ◽  
Elena Kurz ◽  
...  

Background: Subarachnoid hemorrhage (SAH) is a devastating disease with high morbidity and mortality. Hypoxia-induced changes and hemoglobin accumulation within the subarachnoid space are thought to lead to oxidative stress, early brain injury, and delayed vasospasm. This study aimed to evaluate the antioxidant status and its impact on neurological outcome in patients with aneurysmal SAH. Methods: In this prospective observational study, 29 patients with aneurysmal SAH were included (mean age 54.7 ± 12.4). Blood and cerebrospinal fluid (CSF) samples were collected on days (d) 1, 3, and 7. In addition, 29 patients without intracranial hemorrhage served as controls. The antioxidant system was analyzed by glutathione peroxidase (GSH-Px; U/L) and total and free glutathione-sulfhydryl (GSH; mg/L) in the plasma. Superoxide dismutase (SOD, U/mL) and total antioxidant capacity (TAC, µmol/L) were measured in the serum and CSF. Clinical data were compiled on admission (Hunt and Hess grade, Fisher grade, and GCS). Neurological and cognitive outcome (modified Rankin scale (mRS), Glasgow Outcome Scale Extended (GOSE) and Montreal Cognitive Assessment (MoCA)) was assessed after 6 weeks (6 w) and 6 months (6 m). Results: Plasma levels of SOD increased from day 1 to 7 after SAH (d1: 1.22 ± 0.36 U/L; d3: 1.25 ± 0.33 U/L, p = 0.99; d7: 1.52 ± 0.4 U/L, p = 0.019) and were significantly higher compared to controls (1.11 ± 0.27 U/L) at day 7 (p < 0.001). Concordantly, CSF levels of SOD increased from day 1 to 7 after SAH (d1: 1.22 ± 0.41 U/L; d3: 1.77 ± 0.73 U/L, p = 0.10; d7: 2.37 ± 1.29 U/L, p < 0.0001) without becoming significantly different compared to controls (1.74 ± 0.8 U/L, p = 0.09). Mean plasma TAC at day 1 (d1: 77.87 ± 49.72 µmol/L) was not statistically different compared to controls (46.74 ± 32.42 µmol/L, p = 0.25). TAC remained unchanged from day 1 to 7 (d3: 92.64 ± 68.58 µmol/L, p = 0.86; d7: 74.07 ± 54.95 µmol/L, p = 0.8) in plasma. TAC in CSF steeply declined from day 1 to 7 in patients with SAH becoming significantly different from controls at days 3 and 7 (d3: 177.3 ± 108.7 µmol/L, p = 0.0046; d7: 85.35 ± 103.9 µmol/L, p < 0.0001). Decreased SOD levels in plasma and CSF are associated with a worse neurological outcome 6 weeks (mRS: CSF p = 0.0001; plasma p = 0.027/GOSE: CSF p = 0.001; plasma p = 0.001) and 6 months (mRS: CSF p = 0.001; plasma p = 0.09/GOSE: CSF p = 0.001; plasma p = 0.001) after SAH. Increased plasma TAC correlated with a worse neurological outcome 6 weeks (mRS: p = 0.001/GOSE p = 0.001) and 6 months (mRS p = 0.001/GOSE p = 0.001) after SAH. Conclusion: In our study, a reduction in the antioxidative enzyme SOD and elevated TAC were associated with a poorer neurological outcome reflected by mRS and GOSE at 6 weeks and 6 months after SAH. A lower initial SOD CSF concentration was associated with the late deterioration of cognitive ability. These findings support the mounting evidence of the role of oxidative stress in early brain injury formation and unfavorable outcome after SAH.


2007 ◽  
Vol 1129 ◽  
pp. 89-99 ◽  
Author(s):  
Kyu-Yong Lee ◽  
Seong-Ho Koh ◽  
Min Young Noh ◽  
Kun-Woo Park ◽  
Young Joo Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document