scholarly journals Cell cycle control and beyond: emerging roles for the retinoblastoma gene family

Oncogene ◽  
2006 ◽  
Vol 25 (38) ◽  
pp. 5201-5209 ◽  
Author(s):  
C Genovese ◽  
D Trani ◽  
M Caputi ◽  
P P Claudio
2021 ◽  
Vol 32 (4) ◽  
pp. 74-82
Author(s):  
Yailit del Carmen Martinez-Vargas ◽  
Tiago João da Silva-Filho ◽  
Denise Hélen Imaculada Pereira de Oliveira ◽  
Rani Iani Costa Gonçalo ◽  
Lélia Maria Guedes Queiroz

Abstract The Inhibitor of Growth (ING) gene family is a group of tumor suppressor genes that play important roles in cell cycle control, senescence, DNA repair, cell proliferation, and apoptosis. However, inactivation and downregulation of these proteins have been related in some neoplasms. The present study aimed to evaluate the immunohistochemical profiles of ING3 and ING4 proteins in a series of benign epithelial odontogenic lesions. Methods: The sample comprised of 20 odontogenic keratocysts (OKC), 20 ameloblastomas (AM), and 15 adenomatoid odontogenic tumors (AOT) specimens. Nuclear and cytoplasmic immunolabeling of ING3 and ING4 were semi-quantitatively evaluated in epithelial cells of the odontogenic lesions, according to the percentage of immunolabelled cells in each case. Descriptive and statistics analysis were computed, and the p-value was set at 0.05. Results: No statistically significant differences were found in cytoplasmic and nuclear ING3 immunolabeling among the studied lesions. In contrast, AOTs presented higher cytoplasmic and nuclear ING4 labeling compared to AMs (cytoplasmic p-value = 0.01; nuclear p-value < 0.001) and OKCs (nuclear p-value = 0.007). Conclusion: ING3 and ING4 protein downregulation may play an important role in the initiation and progression of more aggressive odontogenic lesions, such as AMs and OKCs.


1995 ◽  
Vol 15 (6) ◽  
pp. 3082-3089 ◽  
Author(s):  
E M Hijmans ◽  
P M Voorhoeve ◽  
R L Beijersbergen ◽  
L J van 't Veer ◽  
R Bernards

E2F DNA binding sites are found in a number of genes whose expression is tightly regulated during the cell cycle. The activity of E2F transcription factors is regulated by association with specific repressor molecules that can bind and inhibit the E2F transactivation domain. For E2F-1, E2F-2, and E2F-3, the repressor is the product of the retinoblastoma gene, pRb. E2f-4 interacts with pRb-related p107 and not with pRb itself. Recently, a cDNA encoding a third member of the retinoblastoma gene family, p130, was isolated. p130 also interacts with E2F DNA binding activity, primarily in the G0 phase of the cell cycle. We report here the cloning of a fifth member of the E2F gene family. The human E2F-5 cDNA encodes a 346-amino-acid protein with a predicted molecular mass of 38 kDa. E2F-5 is more closely related to E2F-4 (78% similarity) than to E2F-1 (57% similarity). E2F-5 resembles the other E2Fs in that it binds to a consensus E2F site in a cooperative fashion with DP-1. By using a specific E2F-5 antiserum, we found that under physiological conditions, E2F-5 interacts preferentially with p130.


2001 ◽  
Vol 120 (5) ◽  
pp. A322-A322
Author(s):  
M STALLS ◽  
J SUN ◽  
K THOMPSON ◽  
N VANHOUTEN

2006 ◽  
Vol 175 (4S) ◽  
pp. 317-317
Author(s):  
Xifeng Wu ◽  
Jian Gu ◽  
H. Barton Grossman ◽  
Christopher I. Amos ◽  
Carol Etzel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document