scholarly journals Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Sunita Maharjan ◽  
Masahide Oku ◽  
Masashi Tsuda ◽  
Jun Hoseki ◽  
Yasuyoshi Sakai

2003 ◽  
Vol 312 (4) ◽  
pp. 1342-1348 ◽  
Author(s):  
Takanori Yokota ◽  
Kanako Sugawara ◽  
Kaoru Ito ◽  
Ryosuke Takahashi ◽  
Hiroyoshi Ariga ◽  
...  


2000 ◽  
Vol 20 (10) ◽  
pp. 1467-1473 ◽  
Author(s):  
Jeffrey N. Keller ◽  
Feng F. Huang ◽  
Hong Zhu ◽  
Jin Yu ◽  
Ye-Shih Ho ◽  
...  

Numerous studies indicate a role for oxidative stress in the neuronal degeneration and cell death that occur during ischemia–reperfusion injury. Recent data suggest that inhibition of the proteasome may be a means by which oxidative stress mediates neuronal cell death. In the current study, the authors demonstrate that there is a time-dependent decrease in proteasome activity, which is not associated with decreased expression of proteasome subunits, after cerebral ischemia–reperfusion injury. To determine the role of oxidative stress in mediating proteasome inhibition, ischemia–reperfusion studies were conducted in mice that either overexpressed the antioxidant enzyme glutathione peroxidase [GPX 1(+)], or were devoid of glutathione peroxidase activity (GPX −/−). After ischemia–reperfusion, GPX 1(+) mice displayed decreased infarct size, attenuated neurologic impairment, and reduced levels of proteasome inhibition compared with either GPX −/− or wild type mice. In addition, GPX 1(+) mice displayed lower levels of 4-hydroxynonenal-modified proteasome subunits after ischemia–reperfusion injury. Together, these data indicate that proteasome inhibition occurs during cerebral ischemia–reperfusion injury and is mediated, at least in part, by oxidative stress.



2018 ◽  
Vol 7 (5) ◽  
pp. 848-858 ◽  
Author(s):  
Hizlan H. Agus ◽  
Cemaynur Sarp ◽  
Meryem Cemiloglu

Terpinolene induces apoptotic cell death via oxidative stress and mitochondrial impairment.







2020 ◽  
Vol 31 (1) ◽  
pp. 3-10
Author(s):  
V. S. Nedzvetsky ◽  
V. Ya. Gasso ◽  
A. M. Hahut ◽  
I. A. Hasso

Cadmium is a common transition metal that entails an extremely wide range of toxic effects in humans and animals. The cytotoxicity of cadmium ions and its compounds is due to various genotoxic effects, including both DNA damage and chromosomal aberrations. Some bone diseases, kidney and digestive system diseases are determined as pathologies that are closely associated with cadmium intoxication. In addition, cadmium is included in the list of carcinogens because of its ability to initiate the development of tumors of several forms of cancer under conditions of chronic or acute intoxication. Despite many studies of the effects of cadmium in animal models and cohorts of patients, in which cadmium effects has occurred, its molecular mechanisms of action are not fully understood. The genotoxic effects of cadmium and the induction of programmed cell death have attracted the attention of researchers in the last decade. In recent years, the results obtained for in vivo and in vitro experimental models have shown extremely high cytotoxicity of sublethal concentrations of cadmium and its compounds in various tissues. One of the most studied causes of cadmium cytotoxicity is the development of oxidative stress and associated oxidative damage to macromolecules of lipids, proteins and nucleic acids. Brain cells are most sensitive to oxidative damage and can be a critical target of cadmium cytotoxicity. Thus, oxidative damage caused by cadmium can initiate genotoxicity, programmed cell death and inhibit their viability in the human and animal brains. To test our hypothesis, cadmium cytotoxicity was assessed in vivo in U251 glioma cells through viability determinants and markers of oxidative stress and apoptosis. The result of the cell viability analysis showed the dose-dependent action of cadmium chloride in glioma cells, as well as the generation of oxidative stress (p <0.05). Calculated for 48 hours of exposure, the LD50 was 3.1 μg×ml-1. The rates of apoptotic death of glioma cells also progressively increased depending on the dose of cadmium ions. A high correlation between cadmium concentration and apoptotic response (p <0.01) was found for cells exposed to 3–4 μg×ml-1 cadmium chloride. Moreover, a significant correlation was found between oxidative stress (lipid peroxidation) and induction of apoptosis. The results indicate a strong relationship between the generation of oxidative damage by macromolecules and the initiation of programmed cell death in glial cells under conditions of low doses of cadmium chloride. The presented results show that cadmium ions can induce oxidative damage in brain cells and inhibit their viability through the induction of programmed death. Such effects of cadmium intoxication can be considered as a model of the impact of heavy metal pollution on vertebrates.



10.2741/e309 ◽  
2011 ◽  
Vol E3 (3) ◽  
pp. 1034-1041
Author(s):  
Gianfranco Pintus


Sign in / Sign up

Export Citation Format

Share Document