scholarly journals Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Pingchuan Deng ◽  
Meng Wang ◽  
Kewei Feng ◽  
Licao Cui ◽  
Wei Tong ◽  
...  
2015 ◽  
Author(s):  
Elita Baldridge ◽  
David J. Harris ◽  
Xiao Xiao ◽  
Ethan P. White

AbstractA number of different models have been proposed as descriptions of the species-abundance distribution (SAD). Most evaluations of these models use only one or two models, focus only a single ecosystem or taxonomic group, or fail to use appropriate statistical methods. We use likelihood and AIC to compare the fit of four of the most widely used models to data on over 16,000 communities from a diverse array of taxonomic groups and ecosystems. Across all datasets combined the log-series, Poisson lognormal, and negative binomial all yield similar overall fits to the data. Therefore, when correcting for differences in the number of parameters the log-series generally provides the best fit to data. Within individual datasets some other distributions performed nearly as well as the log-series even after correcting for the number of parameters. The Zipf distribution is generally a poor characterization of the SAD.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2823 ◽  
Author(s):  
Elita Baldridge ◽  
David J. Harris ◽  
Xiao Xiao ◽  
Ethan P. White

A number of different models have been proposed as descriptions of the species-abundance distribution (SAD). Most evaluations of these models use only one or two models, focus on only a single ecosystem or taxonomic group, or fail to use appropriate statistical methods. We use likelihood and AIC to compare the fit of four of the most widely used models to data on over 16,000 communities from a diverse array of taxonomic groups and ecosystems. Across all datasets combined the log-series, Poisson lognormal, and negative binomial all yield similar overall fits to the data. Therefore, when correcting for differences in the number of parameters the log-series generally provides the best fit to data. Within individual datasets some other distributions performed nearly as well as the log-series even after correcting for the number of parameters. The Zipf distribution is generally a poor characterization of the SAD.


2010 ◽  
Vol 16 ◽  
pp. 117-141 ◽  
Author(s):  
S. Kathleen Lyons ◽  
Felisa A. Smith

Macroecology is a rapidly growing sub-discipline within ecology that is concerned with characterizing statistical patterns of species' abundance, distribution and diversity at spatial and temporal scales typically ignored by traditional ecology. Both macroecology and paleoecology are concerned with answering similar questions (e.g., understanding the factors that influence geographic ranges, or the way that species assemble into communities). As such, macroecological methods easily lend themselves to many paleoecological questions. Moreover, it is possible to estimate the variables of interest to macroecologists (e.g., body size, geographic range size, abundance, diversity) using fossil data. Here we describe the measurement and estimation of the variables used in macroecological studies and potential biases introduced by using fossil data. Next we describe the methods used to analyze macroecological patterns and briefly discuss the current understanding of these patterns. This chapter is by no means an exhaustive review of macroecology and its methods. Instead, it is an introduction to macroecology that we hope will spur innovation in the application of macroecology to the study of the fossil record.


2019 ◽  
Vol 32 (1) ◽  
pp. 103-117
Author(s):  
Yang Wang ◽  
Huoming Zhou ◽  
Jingyong Cai ◽  
Congwen Song ◽  
Linzhao Shi

Sign in / Sign up

Export Citation Format

Share Document