scholarly journals Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Eitan Edrei ◽  
Giuliano Scarcelli
2020 ◽  
Author(s):  
Dong Wang ◽  
Sujit Sahoo ◽  
Xiangwen Zhu ◽  
Giorgio Adamo ◽  
Cuong Dang

Abstract Super-resolution imaging has been revolutionizing technical analysis in various fields from biological to physical sciences. However, many objects are hidden by strongly scattering media such as biological tissues that scramble light paths, create speckle patterns and hinder object’s visualization, let alone super-resolution imaging. Here, we demonstrate non-invasive super-resolution imaging through scattering media based on a stochastic optical scattering localization imaging (SOSLI) technique. After capturing multiple speckle patterns of photo-switchable emitters, our stochastic approach utilizes the speckle correlation property of scattering media to retrieve an image with 100-nm resolution, eight-fold enhancement compared to the diffraction limit. More importantly, we demonstrate our SOSLI to do non-invasive super-resolution imaging through not only static scattering media, but also dynamic scattering media with strong decorrelation such as biological tissues. Our approach paves the way to non-invasively visualize various samples behind scattering media at unprecedented levels of detail.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dong Wang ◽  
Sujit K. Sahoo ◽  
Xiangwen Zhu ◽  
Giorgio Adamo ◽  
Cuong Dang

AbstractSuper-resolution imaging has been revolutionizing technical analysis in various fields from biological to physical sciences. However, many objects are hidden by strongly scattering media such as biological tissues that scramble light paths, create speckle patterns and hinder object’s visualization, let alone super-resolution imaging. Here, we demonstrate non-invasive super-resolution imaging through scattering media based on a stochastic optical scattering localization imaging (SOSLI) technique. After capturing multiple speckle patterns of photo-switchable point sources, our computational approach utilizes the speckle correlation property of scattering media to retrieve an image with a 100-nm resolution, an eight-fold enhancement compared to the diffraction limit. More importantly, we demonstrate our SOSLI to do non-invasive super-resolution imaging through not only static scattering media, but also dynamic scattering media with strong decorrelation such as biological tissues. Our approach paves the way to non-invasively visualize various samples behind scattering media at nanometer levels of detail.


2021 ◽  
Vol 13 (10) ◽  
pp. 1956
Author(s):  
Jingyu Cong ◽  
Xianpeng Wang ◽  
Xiang Lan ◽  
Mengxing Huang ◽  
Liangtian Wan

The traditional frequency-modulated continuous wave (FMCW) multiple-input multiple-output (MIMO) radar two-dimensional (2D) super-resolution (SR) estimation algorithm for target localization has high computational complexity, which runs counter to the increasing demand for real-time radar imaging. In this paper, a fast joint direction-of-arrival (DOA) and range estimation framework for target localization is proposed; it utilizes a very deep super-resolution (VDSR) neural network (NN) framework to accelerate the imaging process while ensuring estimation accuracy. Firstly, we propose a fast low-resolution imaging algorithm based on the Nystrom method. The approximate signal subspace matrix is obtained from partial data, and low-resolution imaging is performed on a low-density grid. Then, the bicubic interpolation algorithm is used to expand the low-resolution image to the desired dimensions. Next, the deep SR network is used to obtain the high-resolution image, and the final joint DOA and range estimation is achieved based on the reconstructed image. Simulations and experiments were carried out to validate the computational efficiency and effectiveness of the proposed framework.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2847-2859
Author(s):  
Soojung Kim ◽  
Hyerin Song ◽  
Heesang Ahn ◽  
Seung Won Jun ◽  
Seungchul Kim ◽  
...  

AbstractAnalysing dynamics of a single biomolecule using high-resolution imaging techniques has been had significant attentions to understand complex biological system. Among the many approaches, vertical nanopillar arrays in contact with the inside of cells have been reported as a one of useful imaging applications since an observation volume can be confined down to few-tens nanometre theoretically. However, the nanopillars experimentally are not able to obtain super-resolution imaging because their evanescent waves generate a high optical loss and a low signal-to-noise ratio. Also, conventional nanopillars have a limitation to yield 3D information because they do not concern field localization in z-axis. Here, we developed novel hybrid nanopillar arrays (HNPs) that consist of SiO2 nanopillars terminated with gold nanodisks, allowing extreme light localization. The electromagnetic field profiles of HNPs are obtained through simulations and imaging resolution of cell membrane and biomolecules in living cells are tested using one-photon and 3D multiphoton fluorescence microscopy, respectively. Consequently, HNPs present approximately 25 times enhanced intensity compared to controls and obtained an axial and lateral resolution of 110 and 210 nm of the intensities of fluorophores conjugated with biomolecules transported in living cells. These structures can be a great platform to analyse complex intracellular environment.


Sign in / Sign up

Export Citation Format

Share Document