CHAPTER 5. Lotus Effect-based Superhydrophobic Surfaces: Candle Soot as a Promising Class of Nanoparticles for Self-cleaning and Oil–Water Separation Applications

Author(s):  
Sanjay S. Latthe ◽  
Kazuya Nakata ◽  
Rainer Höfer ◽  
Akira Fujishima ◽  
Chiaki Terashima
2021 ◽  
Author(s):  
Wensheng Lin ◽  
Mengting Cao ◽  
Kehinde Olonisakin ◽  
Ran Li ◽  
Xinxiang Zhang ◽  
...  

Abstract A novel, versatile, environment-friendly, and economical method was developed to fabricate functional superhydrophobic surfaces on various substrates, including wood, bamboo, cotton, filter paper, sponge, glass, textile, and copper. This method involves synthesizing a two-component modifier solution consisting of SiO2 nanoparticles combination with poly(methylhydrogen)siloxane (PMHS) modification. The superhydrophobicity of the coated surfaces was created by PMHS combined with SiO2 nanoparticles to construct a rough hierarchical structure on the substrate surface. As a result, all superhydrophobic surfaces were maintained under an indoor environment and relative humidity (RH) of 50% for 30 days. Furthermore, the superhydrophobic surfaces were also maintained at environmental conditions of minus 20℃ for 24 hours. It was also confirmed that these surfaces exhibited excellent self-cleaning, oil/water separation, and elimination of underwater oil properties. The method for fabricating superhydrophobic materials proposed in this study will have great application potential in preparing large-scale superhydrophobic surfaces for use in ancient building protection.


2020 ◽  
Vol 12 (5) ◽  
pp. 676-684 ◽  
Author(s):  
Guo-Qiang Xi ◽  
Jun-Feng Li ◽  
Hui Deng ◽  
Ming-Guo Ma

Superhydrophobic surfaces have received enormous attention thanking to their potential applications in the areas of anti-icing, anti-contamination, and oil/water separation. Herein, we have successfully prepared superhydrophobic surfaces, which were synthesized by using the polydimethylsiloxane (PDMS) as adhesive and the magnesium palmitate (Mg-P) were evently coated to form roughness on the surfaces of glass, textile, stainless steel mesh, and paper. The as-fabricated superhydrophobic surfaces possessed excellent water-resistance, self-cleaning properties, durability, and robustness. Remarkably, in the actual oil/water separation, the water contact angle and oil collection efficiency of the superhydrophobic mesh were still more than 150° and 91% even after separation over 10 cycles, respectively. Thus, the superhydrophobic coating has applications potential in self-cleaning, anti-contamination, and oil/water separation fields.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39471-39479 ◽  
Author(s):  
Mingguang Yu ◽  
Qing Wang ◽  
Min Zhang ◽  
Qianjun Deng ◽  
Dongchu Chen

Inspired by the “lotus effect”, we proposed a facile synthetic route toward raspberry-like PS@SiO2 microspheres, which further lead to superhydrophobic surfaces.


Author(s):  
W. Barthlott ◽  
M. Moosmann ◽  
I. Noll ◽  
M. Akdere ◽  
J. Wagner ◽  
...  

Superhydrophobicity is a physical feature of surfaces occurring in many organisms and has been applied (e.g. lotus effect) in bionic technical applications. Some aquatic species are able to maintain persistent air layers under water ( Salvinia effect) and thus become increasingly interesting for drag reduction and other ‘bioinspired’ applications. However, another feature of superhydrophobic surfaces, i.e. the adsorption (not absorption) and subsequent superficial transportation and desorption capability for oil, has been neglected. Intense research is currently being carried out on oil-absorbing bulk materials like sponges, focusing on oleophilic surfaces and meshes to build membranes for oil–water separation. This requires an active pumping of oil–water mixtures onto or through the surface. Here, we present a novel passive, self-driven technology to remove oil from water surfaces. The oil is adsorbed onto a superhydrophobic material (e.g. textiles) and transported on its surface. Vertical and horizontal transportation is possible above or below the oil-contaminated water surface. The transfer in a bioinspired novel bionic oil adsorber is described. The oil is transported into a container and thus removed from the surface. Prototypes have proven to be an efficient and environmentally friendly technology to clean oil spills from water without chemicals or external energy supply. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 3)’.


Author(s):  
Yuandong Jia ◽  
Kecheng Guan ◽  
Pengfei Zhang ◽  
Qin Shen ◽  
Shengyao Wang ◽  
...  

Superwetting surfaces have several applications, such as self-cleaning, anti-fouling, anti-corrosion, water harvesting, and oil–water separation, owing to their distinct structure and properties. Hydrogel-based coatings are particularly attractive owing to their...


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4660-4671
Author(s):  
Yaofa Luo ◽  
Shuang Wang ◽  
Xihan Fu ◽  
Xiaosheng Du ◽  
Haibo Wang ◽  
...  

A durable superhydrophobic, self-cleaning cotton fabric based on UV curing was prepared and used in the field of oil/water separation.


Author(s):  
Yan Yan ◽  
Jiale Guo ◽  
Nuo Chen ◽  
Yuxin Song ◽  
Si Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document