scholarly journals Superhydrophobic Materials With Good Oil/Water Separation And Self-Cleaning Prepared Through A Environment-Friendly And Two-Component Method

Author(s):  
Wensheng Lin ◽  
Mengting Cao ◽  
Kehinde Olonisakin ◽  
Ran Li ◽  
Xinxiang Zhang ◽  
...  

Abstract A novel, versatile, environment-friendly, and economical method was developed to fabricate functional superhydrophobic surfaces on various substrates, including wood, bamboo, cotton, filter paper, sponge, glass, textile, and copper. This method involves synthesizing a two-component modifier solution consisting of SiO2 nanoparticles combination with poly(methylhydrogen)siloxane (PMHS) modification. The superhydrophobicity of the coated surfaces was created by PMHS combined with SiO2 nanoparticles to construct a rough hierarchical structure on the substrate surface. As a result, all superhydrophobic surfaces were maintained under an indoor environment and relative humidity (RH) of 50% for 30 days. Furthermore, the superhydrophobic surfaces were also maintained at environmental conditions of minus 20℃ for 24 hours. It was also confirmed that these surfaces exhibited excellent self-cleaning, oil/water separation, and elimination of underwater oil properties. The method for fabricating superhydrophobic materials proposed in this study will have great application potential in preparing large-scale superhydrophobic surfaces for use in ancient building protection.

2020 ◽  
Vol 12 (5) ◽  
pp. 676-684 ◽  
Author(s):  
Guo-Qiang Xi ◽  
Jun-Feng Li ◽  
Hui Deng ◽  
Ming-Guo Ma

Superhydrophobic surfaces have received enormous attention thanking to their potential applications in the areas of anti-icing, anti-contamination, and oil/water separation. Herein, we have successfully prepared superhydrophobic surfaces, which were synthesized by using the polydimethylsiloxane (PDMS) as adhesive and the magnesium palmitate (Mg-P) were evently coated to form roughness on the surfaces of glass, textile, stainless steel mesh, and paper. The as-fabricated superhydrophobic surfaces possessed excellent water-resistance, self-cleaning properties, durability, and robustness. Remarkably, in the actual oil/water separation, the water contact angle and oil collection efficiency of the superhydrophobic mesh were still more than 150° and 91% even after separation over 10 cycles, respectively. Thus, the superhydrophobic coating has applications potential in self-cleaning, anti-contamination, and oil/water separation fields.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 124
Author(s):  
Jie Gao ◽  
Wensheng Lin ◽  
Shumin Lin ◽  
Xinxiang Zhang ◽  
Wenbin Yang ◽  
...  

Practical application of wood remains a great challenge because of its highly hydrophilic property. In this work, highly hydrophobic wood was produced using an environment-friendly and two-component package method. Poly(methylhydrogen)siloxane (PMHS) and inhibitor played the key role in the hydrophobicity of wood and the assembly process. The two-component package mechanism was discussed in detail. As a result, the water contact angles of the modified wood surface for the radial and cross sections were 139.5° and 152.9°, respectively, which provided the resultant wood high hydrophobicity and dimensional stability. The two-component package method afforded the wood good anti-fouling property and UV-resistance. In addition, the two-component package method could also be applied in functionalization of filter paper for oil/water separation.


Author(s):  
Yuandong Jia ◽  
Kecheng Guan ◽  
Pengfei Zhang ◽  
Qin Shen ◽  
Shengyao Wang ◽  
...  

Superwetting surfaces have several applications, such as self-cleaning, anti-fouling, anti-corrosion, water harvesting, and oil–water separation, owing to their distinct structure and properties. Hydrogel-based coatings are particularly attractive owing to their...


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4660-4671
Author(s):  
Yaofa Luo ◽  
Shuang Wang ◽  
Xihan Fu ◽  
Xiaosheng Du ◽  
Haibo Wang ◽  
...  

A durable superhydrophobic, self-cleaning cotton fabric based on UV curing was prepared and used in the field of oil/water separation.


Author(s):  
Yan Yan ◽  
Jiale Guo ◽  
Nuo Chen ◽  
Yuxin Song ◽  
Si Wu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2431
Author(s):  
Wen Zhang ◽  
Juanjuan Wang ◽  
Xue Han ◽  
Lele Li ◽  
Enping Liu ◽  
...  

In this paper, effective separation of oil from both immiscible oil–water mixtures and oil-in-water (O/W) emulsions are achieved by using poly(dimethylsiloxane)-based (PDMS-based) composite sponges. A modified hard template method using citric acid monohydrate as the hard template and dissolving it in ethanol is proposed to prepare PDMS sponge composited with carbon nanotubes (CNTs) both in the matrix and the surface. The introduction of CNTs endows the composite sponge with enhanced comprehensive properties including hydrophobicity, absorption capacity, and mechanical strength than the pure PDMS. We demonstrate the successful application of CNT-PDMS composite in efficient removal of oil from immiscible oil–water mixtures within not only a bath absorption, but also continuous separation for both static and turbulent flow conditions. This notable characteristic of the CNT-PDMS sponge enables it as a potential candidate for large-scale industrial oil–water separation. Furthermore, a polydopamine (PDA) modified CNT-PDMS is developed here, which firstly realizes the separation of O/W emulsion without continuous squeezing of the sponge. The combined superhydrophilic and superoleophilic property of PDA/CNT-PDMS is assumed to be critical in the spontaneously demulsification process.


Sign in / Sign up

Export Citation Format

Share Document