Collection and Characterisation of Residual Skin Surface Components Obtained from Sebum, Sweat and Epidermal Lipids

Author(s):  
S. S. Shetage ◽  
M. J. Traynor ◽  
M. B. Brown ◽  
R. P. Chilcott
Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 69
Author(s):  
Milica Lukić ◽  
Ivana Pantelić ◽  
Snežana D. Savić

Acidic pH of the skin surface has been recognized as a regulating factor for the maintenance of the stratum corneum homeostasis and barrier permeability. The most important functions of acidic pH seem to be related to the keratinocyte differentiation process, the formation and function of epidermal lipids and the corneocyte lipid envelope, the maintenance of the skin microbiome and, consequently, skin disturbances and diseases. As acknowledged extrinsic factors that affect skin pH, topically applied products could contribute to skin health maintenance via skin pH value control. The obtained knowledge on skins’ pH could be used in the formulation of more effective topical products, which would add to the development of the so-called products ‘for skin health maintenance’. There is a high level of agreement that topical products should be acidified and possess pH in the range of 4 to 6. However, formulators, dermatologists and consumers would benefit from some more precise guidance concerning favorable products pH values and the selection of cosmetic ingredients which could be responsible for acidification, together with a more extensive understanding of the mechanisms underlaying the process of skin acidification by topical products.


2013 ◽  
Vol 20 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Satyajit S. Shetage ◽  
Matthew J. Traynor ◽  
Marc B. Brown ◽  
Mahad Raji ◽  
Diepiriye Graham‐Kalio ◽  
...  

1963 ◽  
Vol 41 (5) ◽  
pp. 265-268 ◽  
Author(s):  
Thomas J Cook ◽  
Allan L Lorincz ◽  
Alan R Spector

WCET Journal ◽  
2019 ◽  
pp. 18-22
Author(s):  
Hiske Smart ◽  
Eman Al Al Jahmi ◽  
Ebrahim Buhiji ◽  
Sally-Anne Smart

Industrial infrared thermometry devices are large and, despite being less expensive than the current gold standard Exergen Dermatemp medical infrared thermometer, are still not affordable enough to ensure unrestricted and consistent use of this assessment modality in regular wound-related day-to-day practice. An increased skin surface temperature differentiation of 3°F associated with a wound has a positive predictive ability to detect deep or surrounding wound infection. This study hypothesised that inexpensive, pen- or pocket-sized, no-touch surface infrared thermometry devices will be equal in ability to detect a 3oF increased skin temperature compared to the Exergen Dermatemp infrared device and be reliable in the hands of any wound assessor. The odds of the control and other thermometers to detect a 3oF temperature difference, irrespective of the raters, were achieved in all five of the mini thermometers tested, with a correct temperature difference prediction that occurred in 90.933% of the times (odds determined 9/10). As a result of this study mini, no-touch infrared thermometry, to detect a 3oF temperature difference in wound assessment to determine tendency, could be implemented into primary health care clinics, rural clinics, day-to-day hospital practice and standard outpatients departments at a small financial cost, regardless of which thermometer is put to use.


1975 ◽  
Vol 37 (6) ◽  
pp. 909-917 ◽  
Author(s):  
Tokuji HIROWATARI

1995 ◽  
Vol 57 (1) ◽  
pp. 52-54 ◽  
Author(s):  
Takako GOTO ◽  
Takahiro GYOTOKU ◽  
Shuhei IMAYAMA ◽  
Yoshiaki HORI
Keyword(s):  

2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Navitha M ◽  
Jitendra Nigam ◽  
Silambarasan N S ◽  
Piyush Kumar ◽  
Pavan Kumar

INTRODUCTION: Superficial tumors are treated with electron beams. Shielding blocks are used to conform to the shape of the tumor. These shielding blocks are usually kept at lower level of the applicator which is near the skin surface. The scattering property of electron may increase the surface dose which will increase with increasing electron energies. The purpose of this study is to compare electron beam transmission of different energies with two different block materials at different placement positions within the applicator. MATERIAL AND METHODS: Cerrobend alloy (50%bismuth, 26.7%lead, 13.3%tin and 10%cadmium) and 1mm thick lead sheets (94%lead, 6%alloy) in Varian Clinac2300C/D linear accelerator with electron energies 6,9,12,16 and 20MeVs using 10x10 applicator at 3 different holding levels was used. Measurements with RW3 Slab phantom (Water equivalent), PPC05 Parallel Plane Chamber, Dose 1 electrometer was done. The slab phantom 30x30x10 cm3 aligned with PPC05 Parallel Plane Chamber (at R85 of respective energies). Readings measured for open and block fields, for different thickness of shielding material, at different placement positions within the applicator. The percentage transmission calculated manually. RESULTS: Using electron energies 6,9,12,16, and 20MeVs respectively the transmission% were: with lead sheet 1mm thickness-2.48%,8.69%,16.05%, 28.03% and 39.50% at lower placement position, 1.19%,3.76%,7.75%,15% and 23.99% at centre placement and 0.96%,3.02%,6.15% and 20.27% for upper placement; with 2mm thickness-0.89%,1.62%,3.66%, 8.95% and 16.35% at lower level, 0.60%,1.28%,2.54%,5.74% and 10.72% at centre level and 0.57%,0.94%, 2.12%,4.85% and 9.22% at upper level; with 3mm thickness-0.80%,1.53%,2.88%,5.29% and 9.42% at lower position, 0.52%,1.25%,2.06%,4.03% and 7.36% at centre position and 0.51%, 0.90%,1.78%,3.66% and 6.43% at upper position; with 4mm thickness- 0.75%,1.40%, 2.71%,4.81% and 7.76% at lower level, 0.50%,1.18%,1.95%,3.68% and 6.31% at center level and 0.51%,0.80%, 1.70%,3.34% and 5.65% at upper level; with 5mm thickness-0.73%, 1.30%,2.57%,4.56% and 7.20% at lower level, 0.45%,1.06%,1.81%,3.48% and 5.68% at center level and 0.47%,0.79%,1.61%,3.13% and 5.24% at upper level. For Cerrobend material 5mm thickness, the transmission at lower level are 0.79%,1.50%,2.98%,5.58% and 10.39%, at center level are 0.52%,0.99%,2.09%,4.12% and 7.67% and at upper level are 0.49%,0.91%, 1.82%,3.75% and 6.90% for the energies 6,9,12,16 and 20 MeV’s respectively. CONCLUSION: There is not much difference in the transmission values at centre and upper levels so as to keep nearer the skin, the centre position in electron applicator may be optimum. Lead sheets can be used since easy to prepare especially for rectangular or square shapes.


2021 ◽  
pp. 1-13
Author(s):  
Philip W. Wertz

Cornified cells of the stratum corneum have a monolayer of an unusual lipid covalently attached to the outer surface. This is referred to as the corneocyte lipid envelope (CLE). It consists of a monolayer of ω-hydroxyceramides covalently attached to the outer surface of the cornified envelope. The CLE is essential for proper barrier function of the skin and is derived from linoleate-rich acylglucosylceramides synthesized in the viable epidermis. Biosynthesis of acylglucosylceramide and its conversion to the cornified envelope is complex. Acylglucosylceramide in the bounding membrane of the lamellar granule is the precursor of the CLE. The acylglucosylceramide in the limiting membrane of the lamellar granule may be oriented with the glucosyl moiety on the inside. Conversion of the acylglucosylceramide to the CLE requires removal of the glucose by action of a glucocerebrosidase. The ester-linked fatty acid may be removed by an as yet unidentified esterase, and the resulting ω-hydroxyceramide may become ester linked to the outer surface of the cornified envelope through action of transglutaminase 1. Prior to removal of ester-linked fatty acids, linoleate is oxidized to an epoxy alcohol through action of 2 lipoxygenases. This can be further oxidized to an epoxy-enone, which can spontaneously attach to the cornified envelope through Schiff’s base formation. Mutations of genes coding for enzymes involved in biosynthesis of the CLE result in ichthyosis, often accompanied by neurologic dysfunction. The CLE is recognized as essential for barrier function of skin, but many questions about details of this essentiality remain. What are the relative roles of the 2 mechanisms of lipid attachment? What is the orientation of acylglucosylceramide in the bounding membrane of lamellar granules? Some evidence supports a role for CLE as a scaffold upon which intercellular lamellae unfold, but other evidence does not support this role. There is also controversial evidence for a role in stratum corneum cohesion. Evidence is presented to suggest that covalently bound ω-hydroxyceramides serve as a reservoir for free sphingosine that can serve in communicating with the viable epidermis and act as a potent broad-acting antimicrobial at the skin surface. Many questions remain.


Sign in / Sign up

Export Citation Format

Share Document