CHAPTER 16. A Novel Medical Haptic Device Using Magneto-rheological Fluid

Author(s):  
Seung-Bok Choi ◽  
Phuong-Bac Nguyen ◽  
Jong-Seok Oh
2011 ◽  
Vol 378-379 ◽  
pp. 585-588
Author(s):  
Phuong Bac Nguyen ◽  
Jong Seok Oh ◽  
Seung Bok Choi

In this study, configuration and modeling of haptic mater device for minimally invasive surgery (MIS) featuring magneto-rheological (MR) fluid are proposed. This haptic device consists of two friction-free magneto-rheological (FFMR) brakes incorporated with a gimbal mechanism for realizing a 2-DOF rotational motion. The total torque induced from the FFMR brakes of the haptic device is computed based on Bingham model. In order to enhance the performance of the device, an optimal design for its brakes is undertaken. A prototype for the design is then manufactured and an experiment is undertaken to validate the result of the optimal design process.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2020 ◽  
Vol 15 (3) ◽  
pp. 37-48
Author(s):  
Zubair Rashid Wani ◽  
Manzoor Ahmad Tantray

The present research work is a part of a project was a semi-active structural control technique using magneto-rheological damper has to be performed. Magneto-rheological dampers are an innovative class of semi-active devices that mesh well with the demands and constraints of seismic applications; this includes having very low power requirements and adaptability. A small stroke magneto-rheological damper was mathematically simulated and experimentally tested. The damper was subjected to periodic excitations of different amplitudes and frequencies at varying voltage. The damper was mathematically modeled using parametric Modified Bouc-Wen model of magneto-rheological damper in MATLAB/SIMULINK and the parameters of the model were set as per the prototype available. The variation of mechanical properties of magneto-rheological damper like damping coefficient and damping force with a change in amplitude, frequency and voltage were experimentally verified on INSTRON 8800 testing machine. It was observed that damping force produced by the damper depended on the frequency as well, in addition to the input voltage and amplitude of the excitation. While the damping coefficient (c) is independent of the frequency of excitation it varies with the amplitude of excitation and input voltage. The variation of the damping coefficient with amplitude and input voltage is linear and quadratic respectively. More ever the mathematical model simulated in MATLAB was in agreement with the experimental results obtained.


2003 ◽  
Author(s):  
Andrea C. Wray ◽  
Francis B. Hoogterp ◽  
Scott Garabedian ◽  
Eric Anderfaas ◽  
Brian Hopkins

Sign in / Sign up

Export Citation Format

Share Document