Parametric Study of Damping Characteristics of Magneto-Rheological Damper: Mathematical and Experimental Approach

2020 ◽  
Vol 15 (3) ◽  
pp. 37-48
Author(s):  
Zubair Rashid Wani ◽  
Manzoor Ahmad Tantray

The present research work is a part of a project was a semi-active structural control technique using magneto-rheological damper has to be performed. Magneto-rheological dampers are an innovative class of semi-active devices that mesh well with the demands and constraints of seismic applications; this includes having very low power requirements and adaptability. A small stroke magneto-rheological damper was mathematically simulated and experimentally tested. The damper was subjected to periodic excitations of different amplitudes and frequencies at varying voltage. The damper was mathematically modeled using parametric Modified Bouc-Wen model of magneto-rheological damper in MATLAB/SIMULINK and the parameters of the model were set as per the prototype available. The variation of mechanical properties of magneto-rheological damper like damping coefficient and damping force with a change in amplitude, frequency and voltage were experimentally verified on INSTRON 8800 testing machine. It was observed that damping force produced by the damper depended on the frequency as well, in addition to the input voltage and amplitude of the excitation. While the damping coefficient (c) is independent of the frequency of excitation it varies with the amplitude of excitation and input voltage. The variation of the damping coefficient with amplitude and input voltage is linear and quadratic respectively. More ever the mathematical model simulated in MATLAB was in agreement with the experimental results obtained.

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1234
Author(s):  
António Sérgio Silva ◽  
Aurora Carvalho ◽  
Pedro Barreiros ◽  
Juliana de Sá ◽  
Carlos Aroso ◽  
...  

Thermal and self-curing acrylic resins are frequently and versatilely used in dental medicine since they are biocompatible, have no flavor or odor, have satisfactory thermal qualities and polishing capacity, and are easy and fast. Thus, given their widespread use, their fracture resistance behavior is especially important. In this research work, we comparatively analyzed the fracture resistance capacity of thermo and self-curing acrylic resins in vitro. Materials and Methods: Five prosthesis bases were created for each of the following acrylic resins: Lucitone®, ProBase®, and Megacryl®, which were submitted to different forces through the use of the CS® Dental Testing Machine, usually mobilized in the context of fatigue tests. To this end, a point was defined in the center of the anterior edge of the aforementioned acrylic resin bases, for which the peak tended until a fracture occurred. Thermosetting resins were, on average, more resistant to fracture than self-curable resins, although the difference was not statistically significant. The thermosetting resins of the Lucitone® and Probase® brands demonstrated behavior that was more resistant to fracture than the self-curing homologues, although the difference was not statistically significant. Thermosetting resins tended to be, on average, more resistant to fracture and exhibited the maximum values for impact strength, compressive strength, tensile strength, hardness, and dimensional accuracy than self-curing resins, regardless of brand.


Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Tao Wang ◽  
Zhengmu Zhou ◽  
Yaqin Zhou

This paper presents the damping characteristics of a linear magneto-rheological (MR) damper with dual controllable ducts based on numerical and experimental analysis. The novel MR damper consisting of a dual-rod cylinder system and a MR valve is used to reduce the influences of viscous damping force and improve dynamic range. Driven by the dual-rod cylinder system, MR fluid flows in the MR valve. The pressure drop of the MR valve with dual independent controllable ducts can be controlled by tuning the current of two independent coils. Based on the mathematical model and the finite element method, the damping characteristics of the MR damper is simulated. A prototype is designed and tested on MTS machine to evaluate its damping characteristics. The results show that the working states and damping force of the MR damper can be controlled by the two independent coils.


2003 ◽  
Vol 22 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Yan Sheng ◽  
Chao Wang ◽  
Ying Pan ◽  
Xinhua Zhang

This paper presents a new active structural control design methodology comparing the conventional linear-quadratic-Gaussian synthesis with a loop-transfer-recovery (LQG/LTR) control approach for structures subjected to ground excitations. It results in an open-loop stable controller. Also the closed-loop stability can be guaranteed. More importantly, the value of the controller's gain required for a given degree of LTR is orders of magnitude less than what is required in the conventional LQG/LTR approach. Additionally, for the same value of gain, the proposed controller achieves a much better degree of recovery than the LQG/LTR-based controller. Once this controller is obtained, the problems of control force saturation are either eliminated or at least dampened, and the controller band-width is reduced and consequently the control signal to noise ratio at the input point of the dynamic system is increased. Finally, numerical examples illustrate the above advantages.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 870
Author(s):  
Md Rasedul Islam ◽  
Md Assad-Uz-Zaman ◽  
Brahim Brahmi ◽  
Yassine Bouteraa ◽  
Inga Wang ◽  
...  

The design of an upper limb rehabilitation robot for post-stroke patients is considered a benchmark problem regarding improving functionality and ensuring better human–robot interaction (HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality) or end-point exercises (end-effector-type functionality). Patients may need both kinds of exercises, depending on the type, level, and degree of impairments. This work focused on designing and developing a seven-degrees-of-freedom (DoFs) upper-limb rehabilitation exoskeleton called ‘u-Rob’ that functions as both exoskeleton and end-effector types device. Furthermore, HRI can be improved by monitoring the interaction forces between the robot and the wearer. Existing upper limb robots lack the ability to monitor interaction forces during passive rehabilitation exercises; measuring upper arm forces is also absent in the existing devices. This research work aimed to develop an innovative sensorized upper arm cuff to measure the wearer’s interaction forces in the upper arm. A PID control technique was implemented for both joint-based and end-point exercises. The experimental results validated both types of functionality of the developed robot.


2021 ◽  
pp. 107754632098638
Author(s):  
Yaya Yan ◽  
Longlei Dong ◽  
Yi Han ◽  
Weishuo Li

Because of the nonlinear hysteresis characteristics of the magneto-rheological damper, the damper’s inverse model has disadvantages of low fitting accuracy and poor practicality. Therefore, in this study, an optimized genetic algorithm has been proposed to optimize the back propagation neural network’s initial weights and threshold. Compared with other damper controllers, the proposed inverse model improves the control current’s prediction accuracy and tracks the desired damping force in real time. Moreover, the proposed inverse model and designed fuzzy controller are applied to the 1/4 vehicle suspension system simulation. The obtained results show that the optimized neural network model can be applied to a practical control. The root mean square value of body acceleration of semi-active suspension is lower than that of passive suspension under different road excitation. This method provides a foundation for the accurate modeling and semi-active control of the magneto-rheological damper.


2016 ◽  
Vol 24 (6) ◽  
pp. 1051-1064 ◽  
Author(s):  
Mehdi Soleymani ◽  
Amir Hossein Abolmasoumi ◽  
Hasanali Bahrami ◽  
Arash Khalatbari-S ◽  
Elham Khoshbin ◽  
...  

Model uncertainties and actuator delays are two factors that degrade the performance of active structural control systems. A new robust control system is proposed for control of an active tuned mass damper (AMD) in a high-rise building. The controller comprises a two-loop sliding model controller in conjunction with a dynamic state predictor. The sliding model controller is responsible for model uncertainties and the state predictor compensates for the time delays due to actuator dynamics and process delay. A reduced model that is validated against experimental data was constructed and equipped with an electro-mechanical AMD system mounted on the top storey. The proposed controller was implemented in the test structure and its performance under seismic disturbances was simulated using a seismic shake table. Moreover, robustness of the proposed controller was examined via variation of the test structure parameters. The shake table test results reveal the effectiveness of the proposed controller at tackling the simulated disturbances in the presence of model uncertainties and input delay.


2008 ◽  
Vol 56 ◽  
pp. 218-224
Author(s):  
Maguid H.M. Hassan

Smart control devices have gained a wide interest in the seismic research community in recent years. Such interest is triggered by the fact that these devices are capable of adjusting their characteristics and/or properties in order to counter act adverse effects. Magneto-Rheological (MR) dampers have emerged as one of a range of promising smart control devices, being considered for seismic applications. However, the reliability of such devices, as a component within a smart structural control scheme, still pause a viable question. In this paper, the reliability of MR dampers, employed as devices within a smart structural control system, is investigated. An integrated smart control setup is proposed for that purpose. The system comprises a smart controller, which employs a single MR damper to improve the seismic response of a single-degree-of-freedom system. The smart controller, in addition to, a model of the MR damper, is utilized in estimating the damper resistance force available to the system. On the other hand, an inverse dynamics model is utilized in evaluating the required damper resistance force necessary to maintain a predefined displacement pattern. The required and supplied forces are, then, utilized in evaluating the reliability of the MR damper. This is the first in a series of studies that aim to explore the effect of other smart control techniques such as, neural networks and neuro fuzzy controllers, on the reliability of MR dampers.


Sign in / Sign up

Export Citation Format

Share Document