“Click” synthesis of small molecule–peptide conjugates for organelle-specific delivery and inhibition of lysosomal cysteine proteases

2010 ◽  
Vol 46 (44) ◽  
pp. 8407 ◽  
Author(s):  
Yuhui Loh ◽  
Haibin Shi ◽  
Mingyu Hu ◽  
Shao Q. Yao
2015 ◽  
Vol 96 (5) ◽  
pp. 876-882
Author(s):  
M A Fomina ◽  
A M Kudlaeva

Aim. Assessment of direct influence of arginine on lysosomal cysteine proteases activity in vitro, in isolation as well as the stimulation of oxidative stress. Methods. The study was conducted on the 72 female conventional mature Wistar rats 280-320 g divided into 6 series of 12 rats each. Lysosome slurries were isolated from the liver of intact animals with a subsequent in vitro incubation in a sucrose solution, in the presence of L-arginine, as well as in the presence of L-arginine accompanied by the stimulation of oxidative stress. Samples of control groups were exposed in vitro with the addition of isolate and oxidant, respectively. Each batch was reproduced three times, incubation was performed at 37 °C in a water bath for 1, 2 and 4 hours. The activity of cathepsins B, L and H was studied using spectrofluorimetric method in two fractions - intra- and extralysosomal. Acid phosphatase activity was used as the main marker of membrane labialization. Results. One hour Incubation with 5 mM arginine in vitro led to inhibition of the cathepsin H activity and lysosomal membrane damage, however, further increase in incubation time led to its stabilization. In vitro exposure to 5 mM H2O2 caused an increase in activity of cathepsines B and L and the drop in the cathepsin H activity without obvious changes in the distribution of enzymes between extra and intralysosomal fractions. In a state of oxidative stress 2-hour in vitro incubation with 5 mM arginine reduced the permeability of lysosomal membranes for cathepsines B, H and L; while 4-hour incubation led to the destabilization of lysosomal membranes. Conclusion. The direct effect of arginine at a concentration of 5 mM within the 1,2 and 4-hour time intervals leads to a distinct change as a lysosomal cysteine protease activity and stability of lysosomal membranes.


2006 ◽  
pp. 3783-3785 ◽  
Author(s):  
Jun Wang ◽  
Mahesh Uttamchandani ◽  
Junqi Li ◽  
Mingyu Hu ◽  
Shao Q. Yao

2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 430-430 ◽  
Author(s):  
S. Shacham ◽  
M. Kauffman ◽  
V. Sandanayaka ◽  
G. Draetta ◽  
S. Shechter ◽  
...  

430 Background: CRM1 (XPO1) is a key nuclear export protein which controls the location of multiple tumor suppressor (TSP) and growth regulatory (GRP) proteins including p53, PI3K/AKT, Wnt/ß-catenin and NF-kB. Forced nuclear expression of TSP and GRP by CRM1 inhibition can lead to apoptosis in cancer cells while sparing normal cells. Methods: Novel small-moleculeCRM1 inhibitors were synthesized and nuclear distribution studies were performed in cells transfected with HIV-rev GFP proteins. Cell proliferation studies were performed in 16 CRC cell lines: LS-123, SW-626, Colo-201, Colo-205, Colo-320DM, Colo-320HSR, Lovo, DLD-1, HCT-15, WiDi, LS-174T, LS-180, SW-620, C2BBe1, HCT-8, HCT-116, and in human peripheral leukocytes (PBMC). Cellular distribution and apoptosis assays were performed on HCT-116. Antitumor activity is assessed in human HCT-116 xenografts in scid-mice. Results: The lead CRM1 inhibitor, KPT-0127, blocks CRM1 mediated nuclear export of HIV-Rev-GFP, FOXO, and p53 with an IC50 of ∼300 nM. KPT-0127 is cytotoxic to various CRC cell lines with EC50s of 0.07-1.1 μM; in 9 CRC lines EC50s were < 0.3 mM. In contrast, normal cell lines and PBMCs had EC50 > 5-20 μM. In HCT- 116 cells, KPT-0127 induces cell cycle arrest at both G1/S and G2/M checkpoints and dose dependently increases nuclear p53, followed by an increase in caspase 3. KTP-0127 10μM shows no significant effect on 37 proteins including several cysteine proteases. In mice, KPT-0127 given by SC injection of 30-100 mg/kg leads to serum levels exceeding the effective CRM1 inhibitory concentration for at least 4 hours and is well tolerated. KPT-0127 given SC to mice bearing HCT-116 colon xenografts results in dose-dependent antitumor activity. Conclusions: The novel small- molecule CRM1 inhibitor KTP-0127 kills CRC lines with multiple TSP, GRP, and oncogenic abnormalities, including p53 mutations/deletions and PTEN deficiency/AKT activation, while sparing normal cells. This likely reflects the ability of CRM1 inhibition to affect multiple critical and non-redundant regulatory pathways. These results support the development of CRM1 inhibitors for the treatment of CRC. IND-enabling CMC and toxicology work are in preparation. [Table: see text]


Endocrinology ◽  
2006 ◽  
Vol 147 (7) ◽  
pp. 3478-3483 ◽  
Author(s):  
Gwonhwa Song ◽  
Thomas E. Spencer ◽  
Fuller W. Bazer

Cystatin C (CST3) is a secreted inhibitor of lysosomal cysteine proteases cathepsins B (CTSB) and CTSL, which are abundant in the ovine endometrium and conceptus. In mice, cathepsins and cystatins play important roles in implantation and placentation. This study determined effects of the estrous cycle, pregnancy, progesterone (P4), and interferon-τ (IFNT) on CST3 in the ovine uterus. In cyclic ewes, CST3 mRNA was low on d 10, increased about 12-fold by d 12, and declined thereafter. In early pregnant ewes, CST3 mRNA was low on d 10 and increased about 130-fold from d 10 to d 20. CST3 mRNA and protein were abundant in the endometrial luminal epithelium (LE) and glandular epithelium and also in conceptus trophectoderm. In uterine flushes from pregnant ewes, CST3 protein was not detected on d 10 but was abundant on d 12, 14, and 16. In another study, treatment of ovariectomized, cyclic ewes with P4 induced a 14-fold increase in endometrial CST3 mRNA, and IFNT stimulated an additional 2-fold increase in CST3 mRNA in P4-treated ewes but not in ewes treated with P4 and the antiprogestin ZK 136,317. CST3 mRNA and protein were abundant in the endometrial luminal epithelium and superficial glandular epithelium of P4-treated ewes but were very low or not detectable in endometria of P4- and ZK-treated ewes. These results indicate that CST3 is a novel P4-induced and IFNT-stimulated gene expressed only in the epithelial cells of the ovine endometrium and implicate CST3 in regulation of uterine cathepsin activity during conceptus implantation.


2003 ◽  
Vol 3 (6) ◽  
pp. 472-482 ◽  
Author(s):  
Karen Honey ◽  
Alexander Y. Rudensky

2011 ◽  
Vol 27 (3) ◽  
pp. 181-192 ◽  
Author(s):  
V. I. Chorna ◽  
O. L. Lyanna

Sign in / Sign up

Export Citation Format

Share Document