hct 116
Recently Published Documents





2023 ◽  
Vol 83 ◽  
Maryam A. Al-Ghamdi ◽  
A. AL-Enazy ◽  
E.A Huwait ◽  
A. Albukhari ◽  
S. Harakeh ◽  

Abstract Colorectal cancer (CRC) is one of the most common cancers leading to comorbidities and mortalities globally. The rational of current study was to evaluate the combined epigallocatechin gallate and quercetin as a potent antitumor agent as commentary agent for therapeutic protocol. The present study investigated the effect of epigallocatechin Gallate (EGCG) (150mg) and quercetin (200mg) at different proportions on proliferation and induction of apoptosis in human colon cancer cells (HCT-116). Cell growth, colonogenic, Annexin V in addition cell cycle were detected in response to phytomolecules. Data obtained showed that, the colony formation was inhibited significantly in CRC starting from the lowest concentration tested of 10 µg/mL resulting in no colonies as visualized by a phase-contrast microscope. Data showed a significant elevation in the annexin V at 100 µg/mL EGCG(25.85%) and 150 µg/mL quercetin (48.35%). Moreover, cell cycle analysis showed that this combination caused cell cycle arrest at the G1 phase at concentration of 100 µg/mL (72.7%) and 150 µg/mL (75.25%). The combined effect of epigallocatechin Gallate and quercetin exert antiproliferative activity against CRC, it is promising in alternative conventional chemotherapeutic agent.

2022 ◽  
Vol 46 (1) ◽  
Eman Zakaria Gomaa

Abstract Background Halophiles are an excellent source of enzymes that are not only salt stable, but also can withstand and carry out reaction efficiently under extreme conditions. l-glutaminase has attracted much attention with respect to proposed applications in several fields such as pharmaceuticals and food industries. The aim of the present study was to investigate the anticancer activity of l-glutaminase produced by halophilic bacteria. Various halophilic bacterial strains were screened for extracellular l-glutaminase production. An attempt was made to study the optimization, purification, and characterization of l-glutaminase from Bacillus sp. DV2-37. The antitumor activity of the produced enzyme was also investigated. Results The potentiality of 15 halophilic bacterial strains isolated from the marine environment that produced extracellular l-glutaminase was investigated. Bacillus sp. DV2-37 was selected as the most potent strain and optimized for enzyme production. The optimization of fermentation process revealed that the highest enzyme activity (47.12 U/ml) was observed in a medium supplemented with 1% (w/v) glucose as a carbon source, 1% (w/v) peptone as a nitrogen source, 5% (w/v) NaCl, the initial pH was 7.0, at 37 °C, using 20% (v/v) inoculum size after 96 h of incubation. The produced crude enzyme was partially purified by ammonium sulfate precipitation and dialysis. Of the various parameters tested, pH 7, 40 °C, and 5% NaCl were found to be the best for l-glutaminase activity. The enzyme also exhibited high salt and temperature stability. The antitumor effect against human breast (MCF-7), hepatocellular (HepG-2), and colon (HCT-116) carcinoma cell lines revealed that l-glutaminase produced by Bacillus sp. DV2-37 showed potent cytotoxic activity of all the tested cell lines in a dose-dependent manner with an IC50 value of 3.5, 3.4, and 3.8 µg/ml, respectively. Conclusions The present study proved that l-glutaminase produced by marine bacteria holds proper features and it has a high potential to be useful for many therapeutic applications.

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 145
Cristina Almeida ◽  
Ana Luísa Teixeira ◽  
Francisca Dias ◽  
Vera Machado ◽  
Mariana Morais ◽  

Colorectal cancer (CRC) is the third most common cancer in the world and represents the third most deadly tumor worldwide. About 15–25% of patients present metastasis in the moment of diagnosis, the liver being the most common site of metastization. Therefore, the development of new therapeutic agents is needed, to improve the patients’ prognosis. Amino acids transporters, LAT1 and ASCT2, are described as upregulated in CRC, being associated with a poor prognosis. Extracellular vesicles have emerged as key players in cell-to-cell communication due to their ability to transfer biomolecules between cells, with a phenotypic impact on the recipient cells. Thus, this study analyzes the presence of LAT1 and ASCT2 mRNAs in CRC-EVs and evaluates their role in phenotype modulation in a panel of four recipient cell lines (HCA-7, HEPG-2, SK-HEP-1, HKC-8). We found that HCT 116-EVs carry LAT1, ASCT2 and other oncogenic mRNAs being taken up by recipient cells. Moreover, the HCT 116-EVs’ internalization was associated with the increase of LAT1 mRNA in SK-HEP-1 cells. We also observed that HCT 116-EVs induce a higher cell migration capacity and proliferation of SK-HEP-1 and HKC-8 cells. The present study supports the LAT1-EVs’ mRNA involvement in cell phenotype modulation, conferring advantages in cell migration and proliferation.

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Yang Mo ◽  
Qin Lu ◽  
Qi Zhang ◽  
Jie Chen ◽  
Youming Deng ◽  

Introduction. Colorectal cancer (CRC), a common digestive tract tumor that contains colon and rectal cancer, is one of the three most common cancers globally. circRNAs are involved in the occurrence and development of CRC, but the mechanism of how they participate in this process remains unclear. Methods. We adopted PCR for expression measure, CCK-8 for cell proliferation detection, Transwell for cell migration and invasion detection, and dual-luciferase reporter assays to detect the potential downstream targets of CCDC66 in CRC. Results. This study showed that circRNA CCDC66 was overexpressed in CRC tissues, and after knockdown, it inhibited the proliferation, migration, and invasion of CRC cells (RKO and HCT-116) in vitro. In addition, the dual-luciferase reporter assay showed that there was a binding site between circCCDC66 and miR-370, as well as between miR-370 and murine double minute 4 (MDM4). That is, circCCDC66 upregulated the expression of MDM4 through competitively binding to miR-370. The expression of circCCDC66 in CRC tissues was positively correlated with MDM4 and negatively correlated with miR-370. Conclusion. In summary, our results indicate that circCCDC66 is a key upregulation of CRC. circCCDC66 upregulates MDM4 through competitive binding to miR-370, thereby enhancing the metastatic ability of CRC cells and promoting the development of CRC.

2022 ◽  
Vol 14 (12) ◽  
Masumeh Sanaei ◽  
Fraidoon Kavoosi

Background: Cyclin-dependent kinase inhibitors (CKIs) are the negative regulator of cell cycle progression, which inhibits cyclin-cdk complexes, resulting in cell cycle arrest. Recently, we evaluated the effect of 5-Aza-CdR on DNMT1 gene expression in the WCH-17 hepatocellular carcinoma (HCC) cell line. Objectives: The current study was designed to analyze the effects of 5-aza-2'–deoxycytidine (5-Aza-CdR, decitabine), 5-azacytidine (5-AzaC, vidaza), and 5'-fluoro-2'-deoxycytidine (FdCyd) on INK4a/ARF, CIP/KIP, and DNA methyltransferase 1 gene expression, apoptosis induction, and cell growth inhibition in colon cancer HCT-116 cell line. Methods: The colon cancer HCT-116 cell line was treated with 5-azaC, 5-Aza-CdR, and FdCyd at 24 and 48h. To determine colon cancer HCT-116 cell viability, cell apoptosis, and the relative expression level of the INK4a/ARF, CIP/KIP, and DNA methyltransferase 1 genes, MTT assay, flow cytometry, and qRT-PCR were done, respectively. Results: 5-azaC, 5-Aza-CdR, and FdCyd significantly inhibited colon cancer HCT-116 cell growth and induced apoptosis. Besides, they significantly increased CIP/KIP (p21CIP1, p27KIP1, and p57KIP2) and INK4 (p14ARF, p15INK4b, and p16INK4a) and decreased DNMT1 gene expression. Besides, minimal and maximal apoptosis were seen in the groups treated with FdCyd and 5-Aza-CdR, respectively. The IC50 for CAF for FdCyd was 1.72 ± 0.23 and 1.63 ± 0.21μM at 24 and 48h, respectively. The IC50 for CAF for 5-AzaC was 2.18 ± 0.33 and 1.98 ± 0.29 μM at 24 and 48h, respectively. The IC50 for CAF for 5-Aza-CdR was 4.08 ± 0.61 and 3.18 ± 0.50 μM at 24 and 48h, respectively. Conclusions: The 5-azac, 5-Aza-CdR, and FdCyd can reactivate the INK4a/ARF and CIP/KIP families through inhibition of DNMT1 activity.

Mariana Almeida Iglesias ◽  
Isabela Schneid Kroning ◽  
Tassiana Ramires ◽  
Carlos Eduardo Cunha ◽  
Gustavo Marçal S. G. Moreira ◽  

The goals of this study were to evaluate the persistence and the virulence potential of Listeria monocytogenes isolated from beef carcasses obtained in processing facilities in the Southern region of Rio Grande do Sul, Brazil, based on pulsed field gel electrophoresis (PFGE), invasion ability in human colorectal carcinoma cells (HCT-116), InlA expression by western blot (WB) and identification of mutation points in the inlA . PFGE profiles demonstrated that L. monocytogenes isolates were grouped based on their previously identified lineages and serogroups (lineage I: serogroups IIb, n = 2, and IVb, n = 5; lineage II, serogroup IIc, n = 5), isolates with indistinguishable genetic profiles by this method were obtained from different slaughterhouses and sampling steps, with up to 3-year interval. Seven isolates showed high invasion ability (2.4 to 7.4%, lineage I, n = 6, lineage II, n = 1) in HCT and expressed InlA. Five isolates showed low cell invasion ability (0.6 to 1.4%, lineage I, n = 1, lineage II, n = 4) and did not express InlA, and two of them (lineage II, serogroup IIc) presented mutations in inlA leading to a premature stop codon (PMSC) type 19, at position 326 (GAA → TAA). The results demonstrated that most of L. monocytogenes isolates from Lineage I expressed InlA and were the most invasive in HCT indicating their high virulence potential, while most isolates from Lineage II showed attenuated invasion due to non-expression of InlA and the presence of PMSC type 19 in inlA . The obtained results demonstrated that L. monocytogenes with indistinguishable PFGE profiles can be persisting or being reintroduced in beef processing facilities in the studied region and differences on their virulence potential based on their lineages and serogroups.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 358
Reem Al Monla ◽  
Zeina Dassouki ◽  
Nouha Sari-Chmayssem ◽  
Hiba Mawlawi ◽  
Hala Gali-Muhtasib

Brown seaweeds are producers of bioactive molecules which are known to inhibit oncogenic growth. Here, we investigated the antioxidant, cytotoxic, and apoptotic effects of two polysaccharides from the brown algae Colpomenia sinuosa, namely fucoidan and alginate, in a panel of cancer cell lines and evaluated their effects when combined with vitamin C. Fucoidan and alginate were isolated from brown algae and characterized by HPLC, FTIR, and NMR spectroscopy. The results indicated that highly sulfated fucoidans had higher antioxidant and cytotoxic effects than alginate. Human colon cancer cells were the most sensitive to the algal treatments, with fucoidan having an IC50 value (618.9 µg/mL−1) lower than that of alginate (690 µg/mL−1). The production of reactive oxygen species was increased upon treatment of HCT-116 cells with fucoidan and alginate, which suggest that these compounds may trigger cell death via oxidative damage. The combination of fucoidan with vitamin C showed enhanced effects compared to treatment with fucoidan alone, as evidenced by the significant inhibitory effects on HCT-116 colon cancer cell viability. The combination of the algal polysaccharides with vitamin C caused enhanced degeneration in the nuclei of cells, as evidenced by DAPI staining and increased the subG1 population, suggesting the induction of cell death. Together, these results suggest that fucoidan and alginate from the brown algae C. sinuosa are promising anticancer compounds, particularly when used in combination with vitamin C.

Umair Ilyas ◽  
Shagufta Naaz ◽  
Syed Aun Muhammad ◽  
Humaira Nadeem ◽  
Reem Altaf ◽  

Background: The development of resistance to available anticancer drugs is increasingly becoming a major challenge and new chemical entities could be unveiled to compensate for this therapeutic failure. Objectives: The current study demonstrated whether N-protected and deprotected amino acid derivatives of 2-aminopyridine could attenuate tumor development using colorectal cancer cell lines. Methods: Biological assays were performed to investigate the anticancer potential of synthesized compounds. The in silico ADME profiling and docking studies were also performed by docking the designed compounds against the active binding site of beta-catenin (CTNNB1) to analyze the binding mode of these compounds. Four derivatives 4a, 4b, 4c, and 4d were selected for investigation of in vitro anticancer potential using colorectal cancer cell line HCT 116. The anti-tumor activities of synthesized compounds were further validated by evaluating the inhibitory effects of these compounds on the target protein beta-catenin through in vitro enzyme inhibitory assay. Results: The docking analysis revealed favorable binding energies and interactions with the target proteins. The in vitro MTT assay on colorectal cancer cell line HCT 116 and HT29 revealed potential anti-tumor activities with an IC50 range of 3.7-8.1µM and 3.27-7.7 µM, respectively. The inhibitory properties of these compounds on the concentration of beta-catenin by ELISA revealed significant percent inhibition of target protein at 100 µg/ml. Conclusion: In conclusion, the synthesized compounds showed significant anti-tumor activities both in silico and in vitro, having potential for further investigating its role in colorectal cancer.

2021 ◽  
Vol 17 ◽  
pp. 2968-2975
Rodolfo H V Nishimura ◽  
Thiago dos Santos ◽  
Valter E Murie ◽  
Luciana C Furtado ◽  
Leticia V Costa-Lotufo ◽  

Microwave-mediated N-arylation of 4-chloroquinazolines in THF/H2O rapidly and efficiently afforded a library of novel 6-halo-2-phenyl-substituted 4-anilinoquinazolines. The methodology was compatible with numerous ortho-, meta-, and para-substituted N-methylanilines as well as substituted anilines and furnished the corresponding 4-anilinoquinazolines in good yields. Preliminary screening of the synthesized compounds against tumor cells (HCT-116 and T98G) showed promising antiproliferative properties.

Sign in / Sign up

Export Citation Format

Share Document