Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols

RSC Advances ◽  
2012 ◽  
Vol 2 (2) ◽  
pp. 421-425 ◽  
Author(s):  
Zaira Maugeri ◽  
Pablo Domínguez de María
Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5595
Author(s):  
Mohaned Aboshatta ◽  
Vitor Magueijo

Amine absorption (or amine scrubbing) is currently the most established method for CO2 capture; however, it has environmental shortcomings and is energy-intensive. Deep eutectic solvents (DESs) are an interesting alternative to conventional amines. Due to their biodegradability, lower toxicity and lower prices, DESs are considered to be “more benign” absorbents for CO2 capture than ionic liquids. In this work, the CO2 absorption capacity of choline-chloride/levulinic-acid-based (ChCl:LvAc) DESs was measured at different temperatures, pressures and stirring speeds using a vapour–liquid equilibrium rig. DES regeneration was performed using a heat treatment method. The DES compositions studied had ChCl:LvAc molar ratios of 1:2 and 1:3 and water contents of 0, 2.5 and 5 mol%. The experimental results showed that the CO2 absorption capacity of the ChCl:LvAc DESs is strongly affected by the operating pressure and stirring speed, moderately affected by the temperature and minimally affected by the hydrogen bond acceptor (HBA):hydrogen bond donator (HBD) molar ratio as well as water content. Thermodynamic properties for CO2 absorption were calculated from the experimental data. The regeneration of the DESs was performed at different temperatures, with the optimal regeneration temperature estimated to be 80 °C. The DESs exhibited good recyclability and moderate CO2/N2 selectivity.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 655
Author(s):  
Chiara Allegretti ◽  
Francesco G. Gatti ◽  
Stefano Marzorati ◽  
Letizia Anna Maria Rossato ◽  
Stefano Serra ◽  
...  

The use of Reactive Deep Eutectic Solvents (RDESs) in the preparation of polar head modified phospholipids (PLs) with phospholipase D (PLD)-catalyzed biotransformations has been investigated. Natural phosphatidylcholine (PC) has been submitted to PLD-catalyzed transphosphatidylations using a new reaction medium composed by a mixture of RDES/buffer. Instead of exploiting deep eutectic solvents conventionally, just as the reaction media, these solvents have been designed here in order to contribute actively to the synthetic processes by participating as reagents. RDESs were prepared using choline chloride or trimethyl glycine as hydrogen-bond acceptors and glycerol or ethylene glycol, as hydrogen-bond donors as well as nucleophiles for choline substitution. Specifically designed RDES/buffer reaction media allowed the obtainment of PLs with optimized yields in the perspective of a sustainable process implementation.


RSC Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 7328-7335 ◽  
Author(s):  
Nerea Rodriguez Rodriguez ◽  
Lieven Machiels ◽  
Bieke Onghena ◽  
Jeroen Spooren ◽  
Koen Binnemans

A mixture of levulinic acid and choline chloride can be used to selectively leach zinc from industrial residues with iron-rich matrices.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Rima J. Isaifan ◽  
Abdukarem Amhamed

In the recent past few years, deep eutectic solvents (DESs) were developed sharing similar characteristics to ionic liquids but with more advantageous features related to preparation cost, environmental impact, and efficiency for gas separation processes. Amongst many combinations of DES solvents that have been prepared, reline (choline chloride as the hydrogen bond acceptor mixed with urea as the hydrogen bond donor) was the first DES synthesized and is still the one with the lowest melting point. Choline chloride/urea DES has proven to be a promising solvent as an efficient medium for carbon dioxide capture when compared with amine alone or ionic liquids under the same conditions. This review sheds light on the preparation method, physical and chemical characteristics, and the CO2 absorption capacity of choline chloride/urea DES under different temperatures and pressures reported up to date.


2021 ◽  
Vol 10 (1) ◽  
pp. 666-676
Author(s):  
Veronika Majová ◽  
Michal Jablonský ◽  
Marek Lelovský

Abstract The processing of lignocellulosic materials is very limited because of their low solubility in water and some organic solvents. Fifteen ternary deep eutectic solvents (DESs) were prepared and tested as solvents suitable for delignification of unbleached pulp. The selected ternary DESs are composed of quaternary ammonium salts and amino acids as hydrogen-bond acceptors, and organic acids and polyvalent alcohols as hydrogen bond donors, with molar ratios varying for the individual components. The delignification efficiency is significantly influenced by the degree of penetration of the solvent into the pulp fibre structure. Therefore, the density and viscosity analysis of individual solvents was performed. Unbleached beech pulp with initial kappa number 13.9 was treated with the prepared DESs. The kappa number indicates the residual lignin content or the bleachability of pulp. The efficiency of the solvents ranged from 1.4% to 28.1%. The most suitable for the pretreatment of fibres, based on lignin removal efficiency, were found to be three DESs, in the following order: malonic acid/choline chloride/1,3-propanediol (1:1:3) > choline chloride/acetamide/lactic acid (1:2:3) > choline chloride/urea/lactic acid (1:2:3).


Author(s):  
Gustavo Gomes ◽  
Renan Mattioli ◽  
Julio Cezar Pastre

The use of non-conventional solvent systems, such as deep eutectic solvents (DES), for biomass processing is a growing interest. DES are formed by two or more components, usually solids at room temperature, which can interact with each other via hydrogen bonding, from a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD), resulting in a liquid phase. The most studied HBA in the literature is choline chloride with several HBD and their use have been extensively reviewed. However, other abundant and natural HBA can be successfully applied on the preparation of different DES, e.g., amino acids. These amino acid-based DES have been used in biomass pretreatment, providing the fractionation of the main macromolecular components by lignin solubilization. In addition, amino acid-based DES can be applied in biomass chemical conversion to obtaining platform chemicals such as furanic derivatives. Bearing this in mind, this review focuses on exploring the use of amino acid-based DES on biomass processing, from pretreatment to chemical conversion.


Sign in / Sign up

Export Citation Format

Share Document