Rational drug design: binding free energy differences of carbonic anhydrase inhibitors

Author(s):  
M. Cristina Menziani ◽  
Christopher A. Reynolds ◽  
W. Graham Richards
2016 ◽  
Vol 12 (11) ◽  
pp. 3396-3406 ◽  
Author(s):  
Juan Wang ◽  
Mao Shu ◽  
Yuanqiang Wang ◽  
Yong Hu ◽  
Yuanliang Wang ◽  
...  

Employing the combined strategy to identify novel CCR5 inhibitors and provide a basis for rational drug design.


2019 ◽  
Vol 10 (19) ◽  
pp. 5064-5072 ◽  
Author(s):  
Kaspar Zimmermann ◽  
Daniel Joss ◽  
Thomas Müntener ◽  
Elisa S. Nogueira ◽  
Marc Schäfer ◽  
...  

Unraveling the native structure of protein–ligand complexes in solution enables rational drug design.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 674
Author(s):  
Ziyad Tariq Muhseen ◽  
Alaa R. Hameed ◽  
Halah M. H. Al-Hasani ◽  
Sajjad Ahmad ◽  
Guanglin Li

SARS-CoV-2 caused the current COVID-19 pandemic and there is an urgent need to explore effective therapeutics that can inhibit enzymes that are imperative in virus reproduction. To this end, we computationally investigated the MPD3 phytochemical database along with the pool of reported natural antiviral compounds with potential to be used as anti-SARS-CoV-2. The docking results demonstrated glycyrrhizin followed by azadirachtanin, mycophenolic acid, kushenol-w and 6-azauridine, as potential candidates. Glycyrrhizin depicted very stable binding mode to the active pocket of the Mpro (binding energy, −8.7 kcal/mol), PLpro (binding energy, −7.9 kcal/mol), and Nucleocapsid (binding energy, −7.9 kcal/mol) enzymes. This compound showed binding with several key residues that are critical to natural substrate binding and functionality to all the receptors. To test docking prediction, the compound with each receptor was subjected to molecular dynamics simulation to characterize the molecule stability and decipher its possible mechanism of binding. Each complex concludes that the receptor dynamics are stable (Mpro (mean RMSD, 0.93 Å), PLpro (mean RMSD, 0.96 Å), and Nucleocapsid (mean RMSD, 3.48 Å)). Moreover, binding free energy analyses such as MMGB/PBSA and WaterSwap were run over selected trajectory snapshots to affirm intermolecular affinity in the complexes. Glycyrrhizin was rescored to form strong affinity complexes with the virus enzymes: Mpro (MMGBSA, −24.42 kcal/mol and MMPBSA, −10.80 kcal/mol), PLpro (MMGBSA, −48.69 kcal/mol and MMPBSA, −38.17 kcal/mol) and Nucleocapsid (MMGBSA, −30.05 kcal/mol and MMPBSA, −25.95 kcal/mol), were dominated mainly by vigorous van der Waals energy. Further affirmation was achieved by WaterSwap absolute binding free energy that concluded all the complexes in good equilibrium and stability (Mpro (mean, −22.44 kcal/mol), PLpro (mean, −25.46 kcal/mol), and Nucleocapsid (mean, −23.30 kcal/mol)). These promising findings substantially advance our understanding of how natural compounds could be shaped to counter SARS-CoV-2 infection.


Author(s):  
Junmei Wang

<p>The recent outbreak of novel coronavirus disease -19 (COVID-19) calls for and welcomes possible treatment strategies using drugs on the market. It is very efficient to apply computer-aided drug design techniques to quickly identify promising drug repurposing candidates, especially after the detailed 3D-structures of key virous proteins are resolved. Taking the advantage of a recently released crystal structure of COVID-19 protease in complex with a covalently-bonded inhibitor, N3,<sup>1</sup> I conducted virtual docking screening of approved drugs and drug candidates in clinical trials. For the top docking hits, I then performed molecular dynamics simulations followed by binding free energy calculations using an endpoint method called MM-PBSA-WSAS.<sup>2-4</sup> Several promising known drugs stand out as potential inhibitors of COVID-19 protease, including Carfilzomib, Eravacycline, Valrubicin, Lopinavir and Elbasvir. Carfilzomib, an approved anti-cancer drug acting as a proteasome inhibitor, has the best MM-PBSA-WSAS binding free energy, -13.82 kcal/mol. Streptomycin, an antibiotic and a charged molecule, also demonstrates some inhibitory effect, even though the predicted binding free energy of the charged form (-3.82 kcal/mol) is not nearly as low as that of the neutral form (-7.92 kcal/mol). One bioactive, PubChem 23727975, has a binding free energy of -12.86 kcal/mol. Detailed receptor-ligand interactions were analyzed and hot spots for the receptor-ligand binding were identified. I found that one hotspot residue HIS41, is a conserved residue across many viruses including COVID-19, SARS, MERS, and HCV. The findings of this study can facilitate rational drug design targeting the COVID-19 protease.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document