Determining phenomenological rate coefficients from a time-dependent, multiple-well master equation: “species reduction” at high temperatures

2013 ◽  
Vol 15 (13) ◽  
pp. 4744 ◽  
Author(s):  
James A. Miller ◽  
Stephen J. Klippenstein
2017 ◽  
Vol 19 (18) ◽  
pp. 11064-11074 ◽  
Author(s):  
Hongmiao Wang ◽  
Xiaoqing You ◽  
Mark A. Blitz ◽  
Michael J. Pilling ◽  
Struan H. Robertson

This work analyzes the effect of overlapping eigenvalues on the high-temperature kinetics of a large oxyradical based on master equation solutions.


2020 ◽  
Author(s):  
Zhengqing Tong ◽  
Margaret S. Cheung ◽  
Barry D. Dunietz ◽  
Eitan Geva ◽  
Xiang Sun

The nonequilibrium Fermi’s golden rule (NE-FGR) describes the time-dependent rate coefficient for electronic transitions, when the nuclear degrees of freedom start out in a <i>nonequilibrium</i> state. In this letter, the linearized semiclassical (LSC) approximation of the NE-FGR is used to calculate the photoinduced charge transfer rates in the carotenoid-porphyrin-C<sub>60</sub> molecular triad dissolved in explicit tetrahydrofuran. The initial nonequilibrium state corresponds to impulsive photoexcitation from the equilibrated ground-state to the ππ* state, and the porphyrin-to-C<sub>60</sub> and the carotenoid-to-C<sub>60</sub> charge transfer rates are calculated. Our results show that accounting for the nonequilibrium nature of the initial state significantly enhances the transition rate of the porphyrin-to-C<sub>60</sub> CT process. We also derive the instantaneous Marcus theory (IMT) from LSC NE-FGR, which casts the CT rate coefficients in terms of a Marcus-like expression, with explicitly time-dependent reorganization energy and reaction free energy. IMT is found to reproduce the CT rates in the system under consideration remarkably well.


1976 ◽  
Vol 56 (2) ◽  
pp. 71-78 ◽  
Author(s):  
D. R. CAMERON ◽  
C. G. KOWALENKO

A small subsystem model was developed to simulate the major nitrogen flow pathways in an unsaturated soil treated with ammonium sulphate. A nonlinear Freundlich equilibrium model and a Langmuir kinetic model were used to describe mathematically the adsorption–desorption of soluble NH4+ to the exchangeable and clay-fixed phases, respectively. Time dependent, microbial mediated first-order kinetic models were used to quantify the ammonification and nitrification processes. The subsystem model was then used as a research tool to derive ammonification and nitrification rate coefficients for a preceding incubation experiment conducted using different soil moisture contents and temperatures. The model yields reasonably good fits to the observed data. A subsequent regression analysis relating the coefficients to temperature and moisture pointed out the importance of the temperature–water content interaction term in quantifying microbial mediated processes.


2012 ◽  
Vol 61 (2-3) ◽  
pp. 305-316 ◽  
Author(s):  
V. Gudmundsson ◽  
O. Jonasson ◽  
Th. Arnold ◽  
C-S. Tang ◽  
H.-S. Goan ◽  
...  

2011 ◽  
Vol 83 (6) ◽  
Author(s):  
D. O. Soares-Pinto ◽  
M. H. Y. Moussa ◽  
J. Maziero ◽  
E. R. deAzevedo ◽  
T. J. Bonagamba ◽  
...  

1989 ◽  
Vol 44 (3) ◽  
pp. 185-191 ◽  
Author(s):  
J.C. Andre ◽  
F. Baros ◽  
J.M.G. Martinho

2018 ◽  
Vol 98 (5) ◽  
Author(s):  
Roie Dann ◽  
Amikam Levy ◽  
Ronnie Kosloff

Sign in / Sign up

Export Citation Format

Share Document