Micelle templated NiO hollow nanospheres as anode materials in lithium ion batteries

2014 ◽  
Vol 2 (20) ◽  
pp. 7337-7344 ◽  
Author(s):  
Manickam Sasidharan ◽  
Nanda Gunawardhana ◽  
Chenrayan Senthil ◽  
Masaki Yoshio

A hollow NiO nanosphere constructed electrode exhibits high charge–discharge capacities, cycling and rate performance in lithium ion rechargeable batteries.

Author(s):  
Zhiwen Long ◽  
Luhan Yuan ◽  
Chu Shi ◽  
Caiqin Wu ◽  
Hui Qiao ◽  
...  

AbstractTransition metal oxides (TMOs) are considered as promising anode materials for lithium-ion batteries in comparison with conventional graphite anode. However, TMO anodes suffer severe volume expansion during charge/discharge process. In this respect, a porous Fe2O3 nanorod-decorated hollow carbon nanofiber (HNF) anode is designed via a combined electrospinning and hydrothermal method followed by proper annealing. FeOOH/PAN was prepared as precursors and sacrificial templates, and porous hollow Fe2O3@carbon nanofiber (HNF-450) composite is formed at 450 °C in air. As anode materials for lithium-ion batteries, HNF-450 exhibits outstanding rate performance and cycling stability with a reversible discharge capacity of 1398 mAh g−1 after 100 cycles at a current density of 100 mA g−1. Specific capacities 1682, 1515, 1293, 987, and 687 mAh g−1 of HNF-450 are achieved at multiple current densities of 200, 300, 500, 1000, and 2000 mA g−1, respectively. When coupled with commercial LiCoO2 cathode, the full cell delivered an outstanding initial charge/discharge capacity of 614/437 mAh g−1 and stability at different current densities. The improved electrochemical performance is mainly attributed to the free space provided by the unique porous hollow structure, which effectively alleviates the volume expansion and facilitates the exposure of more active sites during the lithiation/delithiation process. Graphical abstract Porous Fe2O3 nanorod-decorated hollow carbon nanofibers exhibit outstanding rate performance and cycling stability with a high reversible discharge capacity.


2018 ◽  
Vol 54 (1) ◽  
pp. 648-658 ◽  
Author(s):  
Jing Zhang ◽  
Tianxiang Xu ◽  
Ye Cong ◽  
Yeqiong Zhang ◽  
Xuanke Li ◽  
...  

2021 ◽  
Author(s):  
yitao lou ◽  
XianFa Rao ◽  
Jianjun Zhao ◽  
Jun Chen ◽  
Baobao Li ◽  
...  

In order to develop novel fast charge/discharge carbon anode materials, an organic hard carbon material (PTCDA-1100) is obtained by calcination of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) at high temperature of 1100 oC....


Electrochem ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 124-159 ◽  
Author(s):  
Mitsuru Yamada ◽  
Tatsuya Watanabe ◽  
Takao Gunji ◽  
Jianfei Wu ◽  
Futoshi Matsumoto

Current collectors (CCs) are an important and indispensable constituent of lithium-ion batteries (LIBs) and other batteries. CCs serve a vital bridge function in supporting active materials such as cathode and anode materials, binders, and conductive additives, as well as electrochemically connecting the overall structure of anodes and cathodes with an external circuit. Recently, various factors of CCs such as the thickness, hardness, compositions, coating layers, and structures have been modified to improve aspects of battery performance such as the charge/discharge cyclability, energy density, and the rate performance of a cell. In this paper, the details of interesting and useful attempts of preparing CCs for high battery performance in lithium-ion and post-lithium-ion batteries are reviewed. The advantages and disadvantages of these attempts are discussed.


Nanoscale ◽  
2014 ◽  
Vol 6 (6) ◽  
pp. 3138-3142 ◽  
Author(s):  
Huachao Tao ◽  
Li-Zhen Fan ◽  
Wei-Li Song ◽  
Mao Wu ◽  
Xinbo He ◽  
...  

Hollow core–shell structured Si/C nanocomposites were prepared to adapt for the large volume change during a charge–discharge process.


Nanoscale ◽  
2011 ◽  
Vol 3 (11) ◽  
pp. 4768 ◽  
Author(s):  
Manickam Sasidharan ◽  
Kenichi Nakashima ◽  
Nanda Gunawardhana ◽  
Toshiyuki Yokoi ◽  
Masanori Ito ◽  
...  

2015 ◽  
Vol 3 (16) ◽  
pp. 8683-8692 ◽  
Author(s):  
Lingyun Guo ◽  
Qiang Ru ◽  
Xiong Song ◽  
Shejun Hu ◽  
Yudi Mo

The as-prepared pineapple-shaped ZCO with a porous nanostructure shows a high specific capacity, superior rate capability and excellent cycling stability when used as an anode material for LIBs.


2018 ◽  
Vol 6 (4) ◽  
pp. 1397-1402 ◽  
Author(s):  
Xiang-Qian Zhang ◽  
Wen-Cui Li ◽  
Bin He ◽  
Dong Yan ◽  
Shuang Xu ◽  
...  

Ultrathin phyllosilicate nanosheets inlayed into 1D tubular carbon frameworks are developed and deliver superior rate performance as anodes for LIBs.


Sign in / Sign up

Export Citation Format

Share Document