Metal–organic frameworks with improved moisture stability based on a phosphonate monoester: effect of auxiliary N-donor ligands on framework dimensionality

CrystEngComm ◽  
2014 ◽  
Vol 16 (29) ◽  
pp. 6635-6644 ◽  
Author(s):  
Jian-Wei Zhang ◽  
Cui-Cui Zhao ◽  
Yin-Ping Zhao ◽  
Hai-Qun Xu ◽  
Zi-Yi Du ◽  
...  

A series of metal–organic frameworks (MOFs) with improved moisture stability based on a phosphonate monoester, featuring 1D chains, 2D layers and 3D networks, have been obtained in the presence of auxiliary N-donor ligands.

RSC Advances ◽  
2021 ◽  
Vol 11 (39) ◽  
pp. 23975-23984
Author(s):  
Xue Yang ◽  
Yixia Ren ◽  
Hongmei Chai ◽  
Xiufang Hou ◽  
Zhixiang Wang ◽  
...  

Four fluorescent 2D Zn-MOFs based on a flexible triangular ligand and linear N-donor ligands are hydrothermally prepared and used to detect nitrobenzene in aqueous solution with high sensitivity, demonstrating their potential as fluorescent sensors.


2020 ◽  
Vol 76 (6) ◽  
pp. 605-615
Author(s):  
Yong-Jin Zhao ◽  
Jian-Ping Ma ◽  
Jianzhong Fan ◽  
Yan Geng ◽  
Yu-Bin Dong

The tridentate organic ligand 4,4′,4′′-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoic acid (H3L) has been synthesized (as the methanol 1.25-solvate, C48H39NO6·1.25CH3OH). As a donor–acceptor motif molecule, H3L possess strong intramolecular charge transfer (ICT) fluorescence. Through hydrogen bonds, H3L molecules construct a two-dimensional (2D) network, which pack together into three-dimensional (3D) networks with an ABC stacking pattern in the crystalline state. Based on H3L and M(NO3)2 salts (M = Cd and Zn) under solvothermal conditions, two metal–organic frameworks (MOFs), namely, catena-poly[[triaquacadmium(II)]-μ-10-(4-carboxyphenyl)-4,4′-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6-diyl)dibenzoato], [Cd(C48H37NO6)(H2O)3] n , I, and poly[[μ3-4,4′,4′′-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoato](μ3-hydroxido)zinc(II)], [Zn2(C48H36NO6)(OH)] n , II, were synthesized. Single-crystal analysis revealed that both MOFs adopt a 3D structure. In I, partly deprotonated HL 2− behaves as a bidentate ligand to link a CdII ion to form a one-dimensional chain. In the solid state of I, the existence of weak interactions, such as O—H...O hydrogen bonds and π–π interactions, plays an essential role in aligning 2D nets and 3D networks with AB packing patterns for I. The deprotonated ligand L 3− in II is utilized as a tridentate building block to bind ZnII ions to construct 3D networks, where unusual Zn4O14 clusters act as connection nodes. As a donor–acceptor molecule, H3L exhibits fluorescence with a photoluminescence quantum yield (PLQY) of 70% in the solid state. In comparison, the PL of both MOFs is red-shifted with even higher PLQYs of 79 and 85% for I and II, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mathieu Bosch ◽  
Muwei Zhang ◽  
Hong-Cai Zhou

Metal-organic frameworks (MOFs) are a new category of advanced porous materials undergoing study by many researchers for their vast variety of both novel structures and potentially useful properties arising from them. Their high porosities, tunable structures, and convenient process of introducing both customizable functional groups and unsaturated metal centers have afforded excellent gas sorption and separation ability, catalytic activity, luminescent properties, and more. However, the robustness and reactivity of a given framework are largely dependent on its metal-ligand interactions, where the metal-containing clusters are often vulnerable to ligand substitution by water or other nucleophiles, meaning that the frameworks may collapse upon exposure even to moist air. Other frameworks may collapse upon thermal or vacuum treatment or simply over time. This instability limits the practical uses of many MOFs. In order to further enhance the stability of the framework, many different approaches, such as the utilization of high-valence metal ions or nitrogen-donor ligands, were recently investigated. This review details the efforts of both our research group and others to synthesize MOFs possessing drastically increased chemical and thermal stability, in addition to exemplary performance for catalysis, gas sorption, and separation.


AIChE Journal ◽  
2019 ◽  
Vol 65 (8) ◽  
Author(s):  
Daofei Lv ◽  
Jiayu Chen ◽  
Yongwei Chen ◽  
Zewei Liu ◽  
Yuzhi Xu ◽  
...  

CrystEngComm ◽  
2009 ◽  
Vol 11 (12) ◽  
pp. 2784 ◽  
Author(s):  
Guang-Xiang Liu ◽  
Kun Zhu ◽  
Huan-Min Xu ◽  
Sadafumi Nishihara ◽  
Rong-Yi Huang ◽  
...  

2018 ◽  
Vol 73 (5) ◽  
pp. 311-317
Author(s):  
Zhao Xu ◽  
Fengqin An ◽  
Xiaohui Ma ◽  
Huiliang Zhou ◽  
Weiming Song ◽  
...  

AbstractBased on 2-(4-carboxyphenyl)imidazo[4,5-f]-1,10-phenanthroline (HNCP) and 2,5-thiophenedicarboxylate (TDC2−) ligands, three new lanthanide-containing (Sm, Nd, and Pr) compounds, [Sm(NCP)(TDC)]n (1), [Nd(NCP)(TDC)]n·2n(H2O)0.5 (2), and [Pr(NCP)(TDC)]n·n(H2O)0.5 (3), have been synthesized using the hydrothermal method and structurally characterized using single-crystal X-ray diffraction. Structural analyses have revealed that compounds 1–3 are 3D isostructural metal-organic frameworks in which the [Ln2(COO)4] dimers can be regarded as 6-connecting nodes, and the TDC2− and NCP− ligands are simplified as connectors to achieve the double interspersed 3D networks with the point symbol {412·63}. Thermogravimetric analysis has illustrated that the rigid architecture contributes to superior thermal stability with a thermal decomposition temperature of more than 400°C for the resulting metal-organic frameworks.


2005 ◽  
Vol 2005 (2) ◽  
pp. 321-329 ◽  
Author(s):  
Xiaoju Li ◽  
Rong Cao ◽  
Yanqiong Sun ◽  
Wenhua Bi ◽  
Xing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document