scholarly journals The role of native defects in the transport of charge and mass and the decomposition of Li4BN3H10

2014 ◽  
Vol 16 (46) ◽  
pp. 25314-25320 ◽  
Author(s):  
Khang Hoang ◽  
Anderson Janotti ◽  
Chris G. Van de Walle

We propose an atomistic mechanism for the decomposition of Li4BN3H10 in which the cogeneration of NH3 gas is associated with self-diffusion of negatively charged hydrogen vacancies.

2004 ◽  
Vol 810 ◽  
Author(s):  
Hughes H. Silvestri ◽  
Hartmut A. Bracht ◽  
Ian D. Sharp ◽  
John Hansen ◽  
Arne Nylandsted-Larsen ◽  
...  

ABSTRACTWe present experimental results of impurity and self-diffusion in an isotopically controlled silicon heterostructure extrinsically doped with phosphorus. As a consequence of extrinsic doping, the concentration of singly negatively charged native defects is enhanced and the role of these native defect charge states in the simultaneous phosphorus and Si self-diffusion can be determined. Multilayers of isotopically controlled 28Si and natural silicon enable simultaneous analysis of 30Si self-diffusion into the 28Si enriched layers and phosphorus diffusion throughout the multilayer structure. An amorphous 260 nm thick Si cap layer was deposited on top of the Si isotope heterostructure. The phosphorus ions were implanted to a depth such that all the radiation damage resided inside this amorphous cap layer, preventing the generation of excess native defects and enabling the determination of the Si self-diffusion coefficient and the phosphorus diffusivity under equilibrium conditions. These samples were annealed at temperatures between 950 and 1100°C to study the diffusion. Detailed analysis of the diffusion process was performed on the basis of a P diffusion model which involves neutral and positively charged mobile P species and neutral and singly negatively charged self-interstitial.


1999 ◽  
Vol 568 ◽  
Author(s):  
Arthur F.W. Willoughby ◽  
Janet M. Bonar ◽  
Andrew D.N. Paine

ABSTRACTInterest in diffusion processes in SiGe alloys arises from their potential in HBT's, HFET's, and optoelectronics devices, where migration over distances as small as a few nanometres can be significant. Successful modelling of these processes requires a much improved understanding of the mechanisms of self- and dopant diffusion in the alloy, although recent progress has been made. It is the purpose of this review to set this in the context of diffusion processes in elemental silicon and germanium, and to identify how this can help to elucidate behaviour in the alloy. Firstly, self diffusion processes are reviewed, from general agreement that self-diffusion in germanium is dominated by neutral and acceptor vacancies, to the position in silicon which is still uncertain. Germanium diffusion in silicon, however, appears to be via both vacancy and interstitial processes, and in the bulk alloy there is evidence for a change in dominant mechanism at around 35 percent germanium. Next, a review of dopant diffusion begins with Sb, which appears to diffuse in germanium by a mechanism similar to self-diffusion, and in silicon via monovacancies also, from marker layer evidence. In SiGe, the effects of composition and strain in epitaxial layers on Si substrates are also consistent with diffusion via vacancies, but questions still remain on the role of charged defects. The use of Sb to monitor vacancy effects such as grown-in defects by low temperature MBE, are discussed. Lastly, progress in assessing the role of vacancies and interstitials in the diffusion of boron is reviewed, which is dominated by interstitials in silicon-rich alloys, but appears to change to domination by vacancies at around 40 percent germanium, although studies in pure germanium are greatly needed.


MRS Advances ◽  
2016 ◽  
Vol 1 (26) ◽  
pp. 1891-1902 ◽  
Author(s):  
Francesco Mallamace ◽  
Carmelo Corsaro ◽  
Domenico Mallamace ◽  
Cirino Vasi ◽  
Sebastiano Vasi ◽  
...  

ABSTRACTWe discuss recent literature data on the relaxation times (the primary tα), viscosity, and self-diffusion in water-glycerol and water-methanol mixtures across a wide temperature range from the stable water phase to the deep supercooled regime (373–147K). In particular, to clarify the role of hydrophilicity interactions (the hydrogen bonds) and hydrophobic interactions we study the mixture in terms of the water molar fraction (XW) with fixed temperatures at 5K steps across the entire composition range, and we find a marked deviation from the ideal thermodynamic behavior of the transport functions. This deviation is strongly T and XW dependent and spans values that range from two orders of magnitude at the highest temperature to more than five in the deeply supercooled regime (more precisely, at ≃200K). We analyze these deviations in terms of how the measured values differ from ideal values and find that the hydrogen-bonding water network dominates system properties up to XW = 0.3. We also examine an Arrhenius plot of the maximum excess value (Δtα(T) vs. 1/T) and find two significant changes due to water: one at the dynamical crossover temperature (TL ≃ 225K, i.e., the locus of the Widom line), and one at T ≃ 315K (the water isothermal compressibility χT minimum).


2001 ◽  
Vol 353-356 ◽  
pp. 323-326 ◽  
Author(s):  
Alexander Mattausch ◽  
M. Bockstedte ◽  
Oleg Pankratov

2019 ◽  
Vol 100 (23) ◽  
Author(s):  
Daniel F. Souza ◽  
Andréia L. Rosa ◽  
Pedro Venezuela ◽  
José E. Padilha ◽  
Adalberto Fazzio ◽  
...  

2020 ◽  
Vol 196 ◽  
pp. 626-634
Author(s):  
Jaime Dolado ◽  
Ruth Martínez-Casado ◽  
Pedro Hidalgo ◽  
Rafael Gutierrez ◽  
Arezoo Dianat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document