An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides

2015 ◽  
Vol 44 (9) ◽  
pp. 2629-2642 ◽  
Author(s):  
Hualing Zeng ◽  
Xiaodong Cui

The ultimate goal of making atomically thin electronic devices stimulates intensive research on layered materials, in particular the group-VI transition metal dichalcogenides (TMDs).

Author(s):  
Manoj K. Jana ◽  
C. N. R. Rao

The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS 2 . In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


2020 ◽  
Vol 5 (5) ◽  
pp. 787-807 ◽  
Author(s):  
Wugang Liao ◽  
Siwen Zhao ◽  
Feng Li ◽  
Cong Wang ◽  
Yanqi Ge ◽  
...  

This review presents recent advances and challenges in the interface engineering of 2D TMDCs and emerging electronics based on TMDCs.


2015 ◽  
Vol 44 (9) ◽  
pp. 2603-2614 ◽  
Author(s):  
Agnieszka Kuc ◽  
Thomas Heine

Transition-metal dichalcogenides TX2 (T = W, Mo; X = S, Se, Te) are layered materials that are available in ultrathin forms such as mono-, bi- and multilayers, which are commonly known as two-dimensional materials.


SPIN ◽  
2015 ◽  
Vol 05 (04) ◽  
pp. 1540011 ◽  
Author(s):  
Guohui Su ◽  
Xing Wu ◽  
Wenqi Tong ◽  
Chungang Duan

The recent emergence of two-dimensional (2D) layered materials — graphene and transition metal dichalcogenides — opens a new avenue for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. Here, we provide a brief review of experimental achievements concerning electrical spin injection, spin transport, graphene nanoribbons spintronics and transition metal dichalcogenides spin and pseudospins. Future research in 2D layered materials spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including pseudospins-valley phenomena in graphene and other 2D materials.


2015 ◽  
Vol 44 (9) ◽  
pp. 2643-2663 ◽  
Author(s):  
Gui-Bin Liu ◽  
Di Xiao ◽  
Yugui Yao ◽  
Xiaodong Xu ◽  
Wang Yao

Two-dimensional group-VIB transition metal dichalcogenides have extraordinary properties originating from their complex electronic structures.


Sign in / Sign up

Export Citation Format

Share Document