buckminster fullerene
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Vijay Gulumkar ◽  
Antti Äärelä ◽  
Olli Moisio ◽  
Jani Rahkila ◽  
Ville Tähtinen ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 66
Author(s):  
Sananda Nag ◽  
Mickaël Castro ◽  
Veena Choudhary ◽  
Jean-Francois Feller

Nanocarbon-based vapour sensors are increasingly used to make anticipated diagnosis of diseases by the analysis of volatile organic compound (VOC) biomarkers from the breath, i.e., volatolomics. However, given the tiny number of molecules to detect, usually only tens of parts per billion (ppb), increasing the sensitivity of polymer nanocomposite chemoresistive transducers is still a challenge. As the ability of these nanosensors to convert the interactions with chemical compounds into changes of resistance, depends on the variations of electronic transport through the percolated network of the conducting nanofillers, it is a key parameter to control. Actually, in this conducting architecture, the bottlenecks for electrons’ circulation are the interparticular junctions giving either ohmic conduction in the case of close contacts or quantum tunnelling when jumps though gaps are necessary. This in turn depends on a number of nanometric parameters such as the size and geometry of the nanofillers (spherical, cylindrical, lamellar), the method of structuring of the conductive architecture in the sensory system, etc. The present study focuses on the control of the interparticular junctions in quantum-resistive vapour sensors (vQRS) by nanoassembling pristine CNT or graphene covalently or noncovalently functionalized with spherical Buckminster fullerene (C60) into a percolated network with a hybrid structure. It is found that this strategy allows us to significantly boost, both selectivity and sensitivity of pristine CNT or graphene-based transducers exposed to a set of seven biomarkers, ethanol, methanol, acetone, chloroform, benzene, toluene, cyclohexane and water. This is assumed to result from the spherical fullerene acting on the electronic transport properties at the nanojunctions between the CNT or graphene nanofillers.


CrystEngComm ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 1180-1185
Author(s):  
Jin Ye ◽  
Maria Barrio ◽  
René Céolin ◽  
Navid Qureshi ◽  
Philippe Negrier ◽  
...  

The formation of co-crystals is often unexpected; however, the Buckminster fullerene, for which many solvates are known, is an excellent system to study this tendency.


2018 ◽  
Vol 7 (3) ◽  
pp. 22 ◽  
Author(s):  
Ayawei Nimibofa ◽  
Ebelegi Augustus Newton ◽  
Abasi Yameso Cyprain ◽  
Wankasi Donbebe

Fullerenes were initially found to be inert, but their unique cage structure and solubility in organic solvents opened up their susceptibility to functionalization via addition and redox reactions. Endohedral and exohedral derivatives of Buckminster fullerene [C60] have created a niche in the application of carbon nanomaterials in the medical, electronics, energy and water treatment/conservation sectors.


2017 ◽  
Vol 226 (5) ◽  
pp. 857-867 ◽  
Author(s):  
J. Ye ◽  
M. Barrio ◽  
Ph. Negrier ◽  
N. Qureshi ◽  
I. B. Rietveld ◽  
...  

Author(s):  
M. I. Heggie ◽  
G. L. Haffenden ◽  
C. D. Latham ◽  
T. Trevethan

The Stone–Wales (SW) transformation, or carbon-bond rotation, has been fundamental to understanding fullerene growth and stability, and ab initio calculations show it to be a high-energy process. The nature and topology of the fullerene energy landscape shows how the I h -C 60 must be the final product, if SW transformations are fast enough, and various mechanisms for their catalysis have been proposed. We review SW transformations in fullerenes and then discuss the analogous transformation in graphite, where they form the Dienes defect, originally posited to be a transition state in the direct exchange of a bonded atom pair. On the basis of density functional theory calculations in the local density approximation, we propose that non-equilibrium concentrations of the Dienes defect arising from displacing radiation are rapidly healed by point defects and that equilibrium concentrations of Dienes defects are responsible for the divergent ultra-high-temperature heat capacity of graphite. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


Author(s):  
Diethard K. Böhme

An account is provided of the extraordinary features of buckminster fullerene cations and their chemistry that we discovered in our Ion Chemistry Laboratory at York University (Canada) during a ‘golden’ period of research in the early 1990s, just after C 60 powder became available. We identified new chemical ways of C 60 ionization and tracked novel chemistry of C 60 n + as a function of charge state ( n =1–3) with some 50 different reagent molecules. We found that multiple charges enhance reaction rates and diversify reaction products and mechanisms. Strong electrostatic interactions with reagent molecules were seen to reduce barriers to carbon surface bonding and charge-separation reactions, while intramolecular Coulomb repulsion appeared to localize charge on the surface or the substituent and so influence higher order chemistry, including ‘spindle’, ‘star’, ‘fuzzy ball’, ‘ball-and-chain’ and dimer ion formation. We introduced the notion of ‘apparent’ gas-phase acidity with measurements of proton-transfer reactions of multiply charged fullerene cations. We also explored the attachment of atomic metal cations to C 60 and their subsequent reactions. All these findings were applied to the possible chemistry of fullerene cations in the interstellar medium with a focus on multiply charged fullerene ion formation and the intervention of fullerene cations in fullerene derivatization and molecular synthesis, with a view to their possible future detection. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


Author(s):  
Manoj K. Jana ◽  
C. N. R. Rao

The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS 2 . In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


Sign in / Sign up

Export Citation Format

Share Document