Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1

2015 ◽  
Vol 8 (1) ◽  
pp. 216-220 ◽  
Author(s):  
Chenguang Fu ◽  
Tiejun Zhu ◽  
Yintu Liu ◽  
Hanhui Xie ◽  
Xinbing Zhao

High performance p-type half-Heusler compounds FeNb1−xTixSb are developed via a band engineering approach and a record zT of 1.1 is achieved.

2020 ◽  
Vol 8 (24) ◽  
pp. 12156-12168
Author(s):  
Decheng An ◽  
Shaoping Chen ◽  
Xin Zhai ◽  
Yuan Yu ◽  
Wenhao Fan ◽  
...  

An outstanding figure-of-merit zT ≈ 1.06 at 600 K for p-type elemental Te thermoelectrics is realized by synergistically tuning their carrier and phonon transport behaviors via a multicomponent alloying strategy.


2020 ◽  
Vol 8 (31) ◽  
pp. 15760-15766 ◽  
Author(s):  
Udara Saparamadu ◽  
Xiaojian Tan ◽  
Jifeng Sun ◽  
Zhensong Ren ◽  
Shaowei Song ◽  
...  

P-type SmMg2Bi2, a new member of Bi-based 1-2-2 Zintl family, has been investigated and demonstrated to be a promising material for application in TE power generation.


2007 ◽  
Vol 46 (No. 27) ◽  
pp. L673-L675 ◽  
Author(s):  
Takeyuki Sekimoto ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

2005 ◽  
Vol 297-300 ◽  
pp. 875-880
Author(s):  
Cheol Ho Lim ◽  
Ki Tae Kim ◽  
Yong Hwan Kim ◽  
Dong Choul Cho ◽  
Young Sup Lee ◽  
...  

P-type Bi0.5Sb1.5Te3 compounds doped with 3wt% Te were fabricated by spark plasma sintering and their mechanical and thermoelectric properties were investigated. The sintered compounds with the bending strength of more than 50MPa and the figure-of-merit 2.9×10-3/K were obtained by controlling the mixing ratio of large powders (PL) and small powders (PS). Compared with the conventionally prepared single crystal thermoelectric materials, the bending strength was increased up to more than three times and the figure-of-merit Z was similar those of single crystals. It is expected that the mechanical properties could be improved by using hybrid powders without degradation of thermoelectric properties.


2021 ◽  
Author(s):  
Qi Zhang ◽  
Hengda Sun ◽  
Meifang Zhu

Abstract Organic thermoelectric (OTE) materials have been regarded as a potential candidate to harvest waste heat from complex, low temperature surfaces of objects and convert it into electricity. Recently, n-type conjugated polymers as organic thermoelectric materials have aroused intensive research in order to improve their performance to match up with their p-type counterpart. In this review, we discuss aspects that affect the performance of n-type OTEs, and further focus on the effect of planarity of backbone on doping efficiency and eventually the TE performance. We then summarize strategies such as implementing rigid n-type polymer backbone or modifying conventional polymer building blocks for more planar conformation. In the outlook part, we conclude forementioned devotions and point out new possibility that may promote the future development of this field.


Science ◽  
2019 ◽  
Vol 365 (6460) ◽  
pp. 1418-1424 ◽  
Author(s):  
Wenke He ◽  
Dongyang Wang ◽  
Haijun Wu ◽  
Yu Xiao ◽  
Yang Zhang ◽  
...  

Thermoelectric technology allows conversion between heat and electricity. Many good thermoelectric materials contain rare or toxic elements, so developing low-cost and high-performance thermoelectric materials is warranted. Here, we report the temperature-dependent interplay of three separate electronic bands in hole-doped tin sulfide (SnS) crystals. This behavior leads to synergistic optimization between effective mass (m*) and carrier mobility (μ) and can be boosted through introducing selenium (Se). This enhanced the power factor from ~30 to ~53 microwatts per centimeter per square kelvin (μW cm−1 K−2 at 300 K), while lowering the thermal conductivity after Se alloying. As a result, we obtained a maximum figure of merit ZT (ZTmax) of ~1.6 at 873 K and an average ZT (ZTave) of ~1.25 at 300 to 873 K in SnS0.91Se0.09 crystals. Our strategy for band manipulation offers a different route for optimizing thermoelectric performance. The high-performance SnS crystals represent an important step toward low-cost, Earth-abundant, and environmentally friendly thermoelectrics.


2016 ◽  
Vol 2 (2) ◽  
pp. 114-130 ◽  
Author(s):  
Lili Xi ◽  
Jiong Yang ◽  
Lihua Wu ◽  
Jihui Yang ◽  
Wenqing Zhang

2006 ◽  
Vol 89 (9) ◽  
pp. 092108 ◽  
Author(s):  
Takeyuki Sekimoto ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

1997 ◽  
Vol 478 ◽  
Author(s):  
T. Caillat ◽  
A. Borshchevsky ◽  
J. -P. Fleurial

Abstractβ-Zn4Sb3 was recently identified at the Jet Propulsion Laboratory as a new high performance p-type thermoelectric material with a maximum dimensionless thermoelectric figure of merit ZT of 1.4 at a temperature of 673K. A usual approach, used for many state-of-the-art thermoelectric materials, to further improve ZT values is to alloy β-Zn4Sb3 with isostructural compounds because of the expected decrease in lattice thermal conductivity. We have grown Zn4−xCdxSb3 crystals with 0.2≤x<1.2 and measured their thermal conductivity from 10 to 500K. The thermal conductivity values of Zn4−xCdxSb3 alloys are significantly lower than those measured for β-Zn4Sb3 and are comparable to its calculated minimum thermal conductivity. A strong atomic disorder is believed to be primarily at the origin of the very low thermal conductivity of these materials which are also fairly good electrical conductors and are therefore excellent candidates for thermoelectric applications.


2021 ◽  
Author(s):  
Sergey Levchenko ◽  
Yaqiong Zhong ◽  
Xiaojuan Hu ◽  
Debalaya Sarker ◽  
Qingrui Xia ◽  
...  

Abstract Thermoelectric (TE) materials are among very few sustainable yet feasible energy solutions of present time. This huge promise of energy harvesting is contingent on identifying/designing materials having higher efficiency than presently available ones. However, due to the vastness of the chemical space of materials, only its small fraction was scanned experimentally and/or computationally so far. Employing a compressed-sensing based symbolic regression in an active-learning framework, we have not only identified a trend in materials’ compositions for superior TE performance, but have also predicted and experimentally synthesized several extremely high performing novel TE materials. Among these, we found polycrystalline p-type Cu0.45Ag0.55GaTe2 to possess an experimental figure of merit as high as ~2.8 at 827 K. This is a breakthrough in the field, because all previously known thermoelectric materials with a comparable figure of merit are either unstable or much more difficult to synthesize, rendering them unusable in large-scale applications. The presented methodology demonstrates the importance and tremendous potential of physically informed descriptors in material science, in particular for relatively small data sets typically available from experiments at well-controlled conditions.


Sign in / Sign up

Export Citation Format

Share Document