On-chip high power porous silicon lithium ion batteries with stable capacity over 10 000 cycles

Nanoscale ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 98-103 ◽  
Author(s):  
Andrew S. Westover ◽  
Daniel Freudiger ◽  
Zarif S. Gani ◽  
Keith Share ◽  
Landon Oakes ◽  
...  

We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium battery anode with over 50X power density, and 100X energy density improvement compared to identically prepared on-chip supercapacitors.

2015 ◽  
Author(s):  
Andrew S. Westover ◽  
Daniel Freudiger ◽  
Zarif Gani ◽  
Keith Share ◽  
Landon Oakes ◽  
...  

JOM ◽  
2017 ◽  
Vol 69 (9) ◽  
pp. 1484-1496 ◽  
Author(s):  
Jianlin Li ◽  
Zhijia Du ◽  
Rose E. Ruther ◽  
Seong Jin AN ◽  
Lamuel Abraham David ◽  
...  

2015 ◽  
Vol 3 (16) ◽  
pp. 8627-8635 ◽  
Author(s):  
Chunfu Lin ◽  
Shu Yu ◽  
Shunqing Wu ◽  
Shiwei Lin ◽  
Zi-Zhong Zhu ◽  
...  

Ru0.01Ti0.99Nb2O7, with a much larger capacity than Li4Ti5O12, fulfils the requirements of high power and energy density for electric vehicles.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


2018 ◽  
Vol 42 (24) ◽  
pp. 19811-19817 ◽  
Author(s):  
Kaifeng Yu ◽  
Hanxiang Zhang ◽  
Hui Qi ◽  
Jicai Liang ◽  
Ce Liang

Rice husk-derived porous Si/C synthesized via activation and magnesiothermic reduction reaction possesses excellent electrochemistry performance as a lithium-ion battery anode.


2019 ◽  
Vol 9 (19) ◽  
pp. 4067 ◽  
Author(s):  
Penghui Zhu ◽  
Hans Jürgen Seifert ◽  
Wilhelm Pfleging

Lithium-ion batteries have become the most promising energy storage devices in recent years. However, the simultaneous increase of energy density and power density is still a huge challenge. Ultrafast laser structuring of electrodes is feasible to increase power density of lithium-ion batteries by improving the lithium-ion diffusion kinetics. The influences of laser processing pattern and film thickness on the rate capability and energy density were investigated using Li(Ni0.6Mn0.2Co0.2)O2 (NMC 622) as cathode material. NMC 622 electrodes with thicknesses from 91 µm to 250 µm were prepared, while line patterns with pitch distances varying from 200 µm to 600 µm were applied. The NMC 622 cathodes were assembled opposing lithium using coin cell design. Cells with structured, 91 µm thick film cathodes showed lesser capacity losses with C-rates 3C compared to cells with unstructured cathode. Cells with 250 µm thick film cathode showed higher discharge capacity with low C-rates of up to C/5, and the structured cathodes showed higher discharge capacity, with C-rates of up to 1C. However, the discharge capacity deteriorated with higher C-rate. An appropriate choice of laser generated patterns and electrode thickness depends on the requested battery application scenario; i.e., charge/discharge rate and specific/volumetric energy density.


Sign in / Sign up

Export Citation Format

Share Document