Electrical and lithium ion dynamics in Li2IrO3 from density functional theory study

RSC Advances ◽  
2014 ◽  
Vol 4 (80) ◽  
pp. 42462-42466 ◽  
Author(s):  
Yongchang Chen ◽  
Miao Huo ◽  
Lijuan Song ◽  
Zhaolin Sun

A three-dimensional network for the transport of Li-related point defects in layered Li2IrO3 based on first-principles calculations

2005 ◽  
Vol 884 ◽  
Author(s):  
Santanu Chaudhuri ◽  
James T Muckerman

AbstractPresence of ∼2-4 % Ti is critical for reversible hydrogenation/rehydrogenation in NaAlH4. We have investigated the probable catalytic role of Ti in this complex multi-step process. The present part of our study concentrates on the rehydrogenation reaction, i.e., the reverse reaction that forms NaAlH4 from its constituent binary hydrides. First principles calculations using density functional theory (DFT) show that a particular arrangement of Ti atoms on the surface of Al metal promotes the chemisorption of molecular hydrogen. We also present comparisons with existing experimental data (EXAFS and TEM) to support the existence of such an arrangement on the surface.


2016 ◽  
Vol 850 ◽  
pp. 259-265
Author(s):  
Yong Cheng Li ◽  
Fu He Wang ◽  
Jia Xiang Shang

The low-index (001), (111) and (110) surfaces of austenitic NiTi were investigated by the use of first principles calculations. The calculated results showed that the non-polar NiTi (110) surface was the most stable under most of the Ti chemical potential. The polar Ni terminated NiTi (001) surface was the most stable under Ni-rich conditions. The Ni-terminated surfaces were more stable than their corresponding Ti-terminated surfaces in the entire range of Ti chemical potential. The surface interlayer relaxations of the Ni-terminated surfaces were much larger than those of the corresponding Ti-terminated surfaces. The Ti atoms in the surface layer of the non-polar NiTi (110) surface were more outward than Ni atoms.


RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13662-13668 ◽  
Author(s):  
Cheng Chang ◽  
Sha Yin ◽  
Jun Xu

The adsorption of Li atoms on various types of doped graphene with substituents, including boron, nitrogen, sulfur and silicon atoms, has been theoretically investigated by first-principles calculations, based on the density functional theory.


2017 ◽  
Vol 72 (12) ◽  
pp. 1145-1150
Author(s):  
Zhao-Hua Chen ◽  
Zun Xie

AbstractUsing first-principles calculations, a series of new boron nanotubes (BNTs), which show various electronic properties, were theoretically predicted. Stable nanotubes with various chiral vectors and diameters can be formed by rolling up the boron sheet with relative stability [H. Tang and S. I. Beigi, Phys. Rev. B 82, 115412 (2010).]. By increasing the diameter for BNT, the stability is enhanced. The calculated density of states and band structures demonstrate that all the predicted BNTs are metallic, regardless of their diameter and chirality. The multicentre chemical bonds of the relatively stable boron sheet and BNTs are analysed using the deformation electron density. Within our study, the BNTs all have metallic conductive characteristics, in addition to having a low effective quality and high carrier concentration, which are very good nanoconductive material properties and could be combined to form high-power electrodes for lithium-ion batteries such as those used in many modern electronics.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


2021 ◽  
Author(s):  
H. R. Mahida ◽  
Deobrat Singh ◽  
Yogesh Sonvane ◽  
Sanjeev K. Gupta ◽  
P. B. Thakor ◽  
...  

In the present study, we have investigated the structural, electronic, and charge transport properties of pristine, hydrogenated, and oxidized Si2BN monolayers via first-principles calculations based on density functional theory (DFT).


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


Sign in / Sign up

Export Citation Format

Share Document