Polyrhodanine coated cellulose nanocrystals as optical pH indicators

RSC Advances ◽  
2014 ◽  
Vol 4 (104) ◽  
pp. 60249-60252 ◽  
Author(s):  
Juntao Tang ◽  
Yang Song ◽  
Richard M. Berry ◽  
Kam Chiu Tam

A simple and green approach to produce cellulose nanocrystal@polyrhodanine core–shell nanoparticles via in situ polymerization is proposed. The nanoparticles displayed reversible colour change with pH, confirming their utility as optical pH indicators. This property was retained when the nanoparticles were configured into flat films or hydrogel beads.

2020 ◽  
Vol MA2020-01 (45) ◽  
pp. 2572-2572
Author(s):  
Shin-Bei Tsai ◽  
Chih-Yang Huang ◽  
Jui-Yuan Chen ◽  
Wen-Wei Wu

NANO ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. 2050132
Author(s):  
Yan Jun Liu ◽  
Ling Yan Zhang

A method for in situ preparation of fluorescent AuNPs@AuNCs core/shell nanoparticles by the template of BSA coated gold nanoparticles was developed. The as-prepared AuNPs@AuNCs core/shell nanoparticles possessed advantages such as uniform size, improved monodispersity and excellent fluorescence. The AuNPs@AuNCs core/shell nanoparticles in powder and suspension form were applied to the detection of latent fingermark due to the above properties. The developed latent fingermarks by AuNPs@AuNCs core/shell powder on various surfaces can exhibit excellent ridge details with good contrast between the fingermarks and the substrate. Moreover, under alternative light sources, the latent fingermarks developed with AuNPs@AuNCs core/shell powder work well.


2020 ◽  
Vol 10 (4) ◽  
pp. 1107-1120
Author(s):  
Karina Almeida Barcelos ◽  
Marli Luiza Tebaldi ◽  
Eryvaldo Socrates Tabosa do Egito ◽  
Nádia Miriceia Leão ◽  
Daniel Cristian Ferreira Soares

2018 ◽  
Vol 140 (37) ◽  
pp. 11680-11685 ◽  
Author(s):  
Shu Fen Tan ◽  
Geeta Bisht ◽  
Utkarsh Anand ◽  
Michel Bosman ◽  
Xin Ee Yong ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Yang Tian ◽  
Di Wu ◽  
Xiao Jia ◽  
Binbin Yu ◽  
Sihui Zhan

Fe3O4nanoparticle was synthesized in the solution involving water and ethanol. Then,α-Fe2O3shell was produced in situ on the surface of theFe3O4nanoparticle by surface oxidation in molten salts, formingα-Fe2O3/Fe3O4core-shell nanostructure. It was showed that the magnetic properties transformed from ferromagnetism to superparamagnetism after the primaryFe3O4nanoparticles were oxidized. Furthermore, the obtainedα-Fe2O3/Fe3O4core-shell nanoparticles were used to photocatalyse solution of methyl orange, and the results revealed thatα-Fe2O3/Fe3O4nanoparticles were more efficient than the self-preparedα-Fe2O3nanoparticles. At the same time, the photocatalyzer was recyclable by applying an appropriate magnetic field.


Sign in / Sign up

Export Citation Format

Share Document