Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device

RSC Advances ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 2517-2522 ◽  
Author(s):  
Xiaobo Ji ◽  
Song Guo ◽  
Changfeng Zeng ◽  
Chongqing Wang ◽  
Lixiong Zhang

Calcium alginate microfibers with spindle-knots are fabricated by combining microfluidic technique with wet-spinning method. The structures of the knots can be conveniently regulated by changing the two-phase flow rate ratio and the micropipette diameter.

Author(s):  
Jin-yuan Qian ◽  
Xiao-juan Li ◽  
Zan Wu ◽  
Zhi-jiang Jin ◽  
Junhui Zhang ◽  
...  

Slug flow is a common flow pattern in the liquid–liquid two-phase flow in microchannels. It is an ideal pattern for mass transfer enhancement. Many factors influence the slug formation such as the channel geometries (channel widths, channel depth), flow rates of the two phase, and physical properties. In this paper, in order to investigate the liquid–liquid two-phase slug formation in a T-junction microchannel quantitatively, the volume of fluid (VOF) method is adopted to simulate the whole slug formation process. With the validated model, the effects of the disperse phase channel width, channel depth, and two-phase flow rate ratio on slug formation frequency and slug size (slug volume and slug length) are analyzed with dimensionless parameters. Dimensionless parameters include the disperse-to-continuous phase channel width ratio, height-to-width ratio, and two-phase flow rate ratio. Results show that both the channel geometry and two-phase flow rate ratio have a significant influence on slug formation. Compared with the conventional slug formation stages, a new stage called the lag stage emerges when the disperse phase channel width decreases to half of the continuous phase channel width. When the channel depth decreases to one third of the continuous phase channel width, the flow patterns become unstable and vary with the two-phase flow rate ratio. Moreover, empirical correlations are proposed to predict the slug formation frequency. The correlation between slug formation frequency and slug volume is quantified.


1989 ◽  
Vol 25 (7) ◽  
pp. 394-396
Author(s):  
V. E. Shcherba ◽  
I. S. Berezin ◽  
S. S. Danilenko ◽  
I. E. Titov ◽  
P. P. Filippov

2021 ◽  
Vol 2097 (1) ◽  
pp. 012027
Author(s):  
Zhongxin Liu ◽  
Zhiliang Wang ◽  
Chao Wang ◽  
Jinsong Zhang

Abstract This paper novel designed the local convergence configuration in the coaxial channels to study the two-phase flow (lubricating oil (continuous phase, flow rate Q c)/deionized water (dispersed phase, flow rate Q d)). Two geometric control variables, the relative position (x) and tapering characteristics (α), had the different effects on the droplet formation. The increase of relative position x caused the higher frequency and finer droplets, and the increase of convergence angle α, took the opposite effects. The results indicated that the equivalent dimensionless droplet length Ld/Wout and the flow rate ratio Qd/Qc had an exponential relationship of about 1/2. Similarly, it was found that the dispersed droplets generating frequency and the two-phase capillary number, CaTP = uTPμc/σ, had an exponential relationship. The advantage of the convergent configurations in micro-channel was the size and efficiency of droplet generation was very favorable to be controlled by α and x.


Inventions ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 54 ◽  
Author(s):  
Katerina Loizou ◽  
Voon-Loong Wong ◽  
Buddhika Hewakandamby

The focus of this work is to examine the effect of flow rate ratio (quotient of the dispersed phase flow rate over the continuous phase flow rate) on a regime transition from squeezing to dripping at constant capillary numbers. The effect of the flow rate ratio on the volume of droplets generated in a microfluidic T-junction is discussed, and a new scaling law to estimate their volume is proposed. Existing work on a regime transition reported by several researchers focuses on the effect of the capillary number on regime transition, and the results that are presented in this paper advance the current understanding by indicating that the flow rate ratio is another parameter that dictates regime transition. In this paper, the transition between squeezing and dripping regimes is reported at constant capillary numbers, with a transition region identified between squeezing and dripping regimes. Dripping is observed at lower flow rate ratios and squeezing at higher flow rate ratios, with a transition region between the two regimes at flow rate ratios between 1 and 2. This is presented in a flow regime map that is constructed based on the observed mechanism. A scaling model is proposed to characterise droplet volume in terms of flow rate ratio and capillary number. The effect of flow rate ratio on the non-dimensional droplet volume is presented, and lastly, the droplet volume is expressed in terms of a range of parameters, such as the viscosity ratio between the dispersed and the continuous phase, capillary number, and the geometrical characteristics of the channels.


ACS Omega ◽  
2020 ◽  
Vol 5 (41) ◽  
pp. 26955-26955
Author(s):  
Hongwen Luo ◽  
Beibei Jiang ◽  
Haitao Li ◽  
Ying Li ◽  
Zhangxin Chen

2014 ◽  
Vol 1 (4) ◽  
pp. TEP0019-TEP0019 ◽  
Author(s):  
Jun-ichi TAKANO ◽  
Hideaki MONJI ◽  
Akiko KANEKO ◽  
Yutaka ABE ◽  
Hiroyuki YOSHIDA ◽  
...  

2017 ◽  
Vol 328 ◽  
pp. 480-487 ◽  
Author(s):  
V.R. Giampietro ◽  
M. Gulas ◽  
P. Rudolf von Rohr
Keyword(s):  

Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


Sign in / Sign up

Export Citation Format

Share Document