Selective anti-cancer effects of palm phytonutrients on human breast cancer cells

RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 1745-1753 ◽  
Author(s):  
Radhika Loganathan ◽  
Ammu K. Radhakrishnan ◽  
Kanga Rani Selvaduray ◽  
Kalanithi Nesaretnam

Palm TRF exhibited higher potential to induce death by apoptosis and cleavage of the PARP enzyme as well as suppress expression of NF-κB induced by exposure to TNF-α in human breast cancer cells compared to carotenoids, squalene and co-enzyme Q10.

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1280
Author(s):  
Seung-Ho Park ◽  
Hyunhee Kim ◽  
Sungmin Kwak ◽  
Ji-Hoon Jeong ◽  
Jangho Lee ◽  
...  

Tumor necrosis factor-α (TNF-α) plays a significant role in inflammation and cancer-related apoptosis. We identified a TNF-α-mediated epigenetic mechanism of apoptotic cell death regulation in estrogen receptor-α (ERα)-positive human breast cancer cells. To assess the apoptotic effect of TNF-α, annexin V/ propidium iodide (PI) double staining, cell viability assays, and Western blotting were performed. To elucidate this mechanism, histone deacetylase (HDAC) activity assay and immunoprecipitation (IP) were conducted; the mechanism was subsequently confirmed through chromatin IP (ChIP) assays. Finally, we assessed HDAC3–ERα-mediated apoptotic cell death after TNF-α treatment in ERα-positive human breast cancer (MCF-7) cells via the transcriptional activation of p53 target genes using luciferase assay and quantitative reverse transcription PCR. The TNF-α-induced selective apoptosis in MCF-7 cells was negatively regulated by the HDAC3–ERα complex in a caspase-7-dependent manner. HDAC3 possessed a p53-binding element, thus suppressing the transcriptional activity of its target genes. In contrast, MCF-7 cell treatment with TNF-α led to dissociation of the HDAC3–ERα complex and substitution of the occupancy on the promoter by the p53–p300 complex, thus accelerating p53 target gene expression. In this process, p53 stabilization was accompanied by its acetylation. This study showed that p53-mediated apoptosis in ERα-positive human breast cancer cells was negatively regulated by HDAC3–ERα in a caspase-7-dependent manner. Therefore, these proteins have potential application in therapeutic strategies.


2018 ◽  
Vol 16 ◽  
pp. 1721727X1775180 ◽  
Author(s):  
Jin Mo Ku ◽  
Se Hyang Hong ◽  
Hyo In Kim ◽  
Ye Seul Lim ◽  
Sol Ji Lee ◽  
...  

Cucurbitacins are triterpenoids commonly found in Cucurbitaceae and Cruciferae and have long been used in traditional medicine. Cucurbitacins demonstrate anti-inflammatory and anti-cancer activities. We investigated whether cucurbitacin D affects viability in breast cancer cells and its mechanism of action. An MTT assay was used to measure the viability of breast cancer cells. Western blot analysis was used to measure the expression of various modulators, such as p-p53, p-Stat3, p-Akt, and p-NF-κB. Doxorubicin and cucurbitacin D affected the viability of MCF7, MDA-MB-231, and SKBR3 cells. Cucurbitacin D and doxorubicin increased p-p53 expression in MCF7, SKBR3, and MDA-MB-231 cells. Cucurbitacin D suppressed p-Akt, p-NF-κB, and p-Stat3 expression in MCF7, MDA-MB-231, and SKBR3 cells. Doxorubicin alone did not decrease p-Akt and p-Stat3 levels. Cucurbitacin D decreased p-NF-κB and p-Stat3 levels. Doxorubicin in combination with cucurbitacin D increased p-p53 levels and suppressed Akt, NF-κB, Stat3, and Bcl-2 expression more than cucurbitacin D alone. Our results clearly demonstrate that cucurbitacin D could be a useful compound for treating human breast cancer.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3623 ◽  
Author(s):  
Anjugam Paramanantham ◽  
Min Jeong Kim ◽  
Eun Joo Jung ◽  
Hye Jung Kim ◽  
Seong-Hwan Chang ◽  
...  

Anthocyanins isolated from Vitis coignetiae Pulliat (Meoru in Korea) (AIMs) have various anti-cancer properties by inhibiting Akt and NF-κB which are involved in drug resistance. Cisplatin (CDDP) is one of the popular anti-cancer agents. Studies reported that MCF-7 human breast cancer cells have high resistance to CDDP compared to other breast cancer cell lines. In this study, we confirmed CDDP resistance of MCF-7 cells and tested whether AIMs can overcome CDDP resistance of MCF-7 cells. Cell viability assay revealed that MCF-7 cells were more resistant to CDDP treatment than MDA-MB-231 breast cancer cells exhibiting aggressive and high cancer stem cell phenotype. AIMs significantly augmented the efficacy of CDDP with synergistic effects on MCF-7 cells. Molecularly, Western blot analysis revealed that CDDP strongly increased Akt and moderately reduced p-NF-κB and p-IκB and that AIMs inhibited CDDP-induced Akt activation, and augmented CDDP-induced reduction of p-NF-κB and p-IκB in MCF-7 cells. In addition, AIMs significantly downregulated an anti-apoptotic protein, XIAP, and augmented PARP-1 cleavage in CDDP-treated MCF-7 cells. Moreover, under TNF-α treatment, AIMs augmented CDDP efficacy with inhibition of NF-κB activation on MCF-7 cells. In conclusion, AIMs enhanced CDDP sensitivity by inhibiting Akt and NF-κB activity of MCF-7 cells that show relative intrinsic CDDP resistance.


Molecules ◽  
2008 ◽  
Vol 13 (12) ◽  
pp. 2975-2985 ◽  
Author(s):  
Sangmin Kim ◽  
Jae Hyuck Choi ◽  
Jong Bin Kim ◽  
Seok Jin Nam ◽  
Jung-Hyun Yang ◽  
...  

2014 ◽  
Vol 10 (39) ◽  
pp. 661 ◽  
Author(s):  
MiHeon Ryu ◽  
Hye-Yeon Han ◽  
Hyungwoo Kim ◽  
YongHae Son ◽  
Guemsan Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document