scholarly journals Berberine Suppresses TNF-α-induced MMP-9 and Cell Invasion through Inhibition of AP-1 Activity in MDA-MB-231 Human Breast Cancer Cells

Molecules ◽  
2008 ◽  
Vol 13 (12) ◽  
pp. 2975-2985 ◽  
Author(s):  
Sangmin Kim ◽  
Jae Hyuck Choi ◽  
Jong Bin Kim ◽  
Seok Jin Nam ◽  
Jung-Hyun Yang ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1280
Author(s):  
Seung-Ho Park ◽  
Hyunhee Kim ◽  
Sungmin Kwak ◽  
Ji-Hoon Jeong ◽  
Jangho Lee ◽  
...  

Tumor necrosis factor-α (TNF-α) plays a significant role in inflammation and cancer-related apoptosis. We identified a TNF-α-mediated epigenetic mechanism of apoptotic cell death regulation in estrogen receptor-α (ERα)-positive human breast cancer cells. To assess the apoptotic effect of TNF-α, annexin V/ propidium iodide (PI) double staining, cell viability assays, and Western blotting were performed. To elucidate this mechanism, histone deacetylase (HDAC) activity assay and immunoprecipitation (IP) were conducted; the mechanism was subsequently confirmed through chromatin IP (ChIP) assays. Finally, we assessed HDAC3–ERα-mediated apoptotic cell death after TNF-α treatment in ERα-positive human breast cancer (MCF-7) cells via the transcriptional activation of p53 target genes using luciferase assay and quantitative reverse transcription PCR. The TNF-α-induced selective apoptosis in MCF-7 cells was negatively regulated by the HDAC3–ERα complex in a caspase-7-dependent manner. HDAC3 possessed a p53-binding element, thus suppressing the transcriptional activity of its target genes. In contrast, MCF-7 cell treatment with TNF-α led to dissociation of the HDAC3–ERα complex and substitution of the occupancy on the promoter by the p53–p300 complex, thus accelerating p53 target gene expression. In this process, p53 stabilization was accompanied by its acetylation. This study showed that p53-mediated apoptosis in ERα-positive human breast cancer cells was negatively regulated by HDAC3–ERα in a caspase-7-dependent manner. Therefore, these proteins have potential application in therapeutic strategies.


Endocrinology ◽  
2012 ◽  
Vol 153 (2) ◽  
pp. 554-563 ◽  
Author(s):  
Su-Ryun Kim ◽  
Hyun-Joo Park ◽  
Yun-Hee Bae ◽  
Soon-Cheol Ahn ◽  
Hee-Jun Wee ◽  
...  

Obesity is frequently associated with breast cancer. Such associations are possibly mediated by adipokines. Visfatin, an adipokine, has recently been shown to be related to the development and progression of breast cancer. Therefore, the down-regulation of visfatin may be a novel strategy for breast cancer therapy. Curcumin has anticancer activities by modulating multiple signaling pathways and genes. The purpose of this study was to investigate whether visfatin gene expression is affected by curcumin in human breast cancer cells and to characterize the functional role of visfatin in breast cancer. We found that the mRNA and protein levels of visfatin were down-regulated by curcumin in MDA-MB-231, MDA-MB-468, and MCF-7 breast cancer cells, along with decreased activity of constitutive nuclear factor (NF)-κB. We confirmed the repressive effect of curcumin on visfatin transcription by performing a visfatin promoter-driven reporter assay and identified two putative NF-κB-binding sites on visfatin promoter that are important for this effect. EMSA and chromatin immunoprecipitation analysis indicated the binding of p65 to the visfatin promoter, which was effectively blocked by curcumin. Enforced expression of p65 protein increased visfatin promoter activity, whereas blocking NF-κB signaling suppressed visfatin gene expression. Visfatin could enhance the invasion of MDA-MB-231 cells and also attenuate curcumin-induced inhibition of cell invasion; on the other hand, visfatin knockdown by small interfering RNA led to the reduction of cell invasion. Our data demonstrate, for the first time, that curcumin down-regulates visfatin gene expression in human breast cancer cells by a mechanism that is, at least in part, NF-κB dependent and suggest that visfatin may contribute to breast cancer cell invasion and link obesity to breast cancer development and progression.


RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 1745-1753 ◽  
Author(s):  
Radhika Loganathan ◽  
Ammu K. Radhakrishnan ◽  
Kanga Rani Selvaduray ◽  
Kalanithi Nesaretnam

Palm TRF exhibited higher potential to induce death by apoptosis and cleavage of the PARP enzyme as well as suppress expression of NF-κB induced by exposure to TNF-α in human breast cancer cells compared to carotenoids, squalene and co-enzyme Q10.


Cell Cycle ◽  
2007 ◽  
Vol 6 (16) ◽  
pp. 2038-2042 ◽  
Author(s):  
Amber Yasmeen ◽  
Tarek A. Bismar ◽  
Mustapha Kandouz ◽  
William D. Foulkes ◽  
Pierre-Yves Desprez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document