Evaluation of n-butanol as an oxygenated additive to improve combustion-emission-performance characteristics of a diesel engine fuelled with a diesel-calophyllum inophyllum biodiesel blend

RSC Advances ◽  
2015 ◽  
Vol 5 (22) ◽  
pp. 17160-17170 ◽  
Author(s):  
S. Imtenan ◽  
H. H. Masjuki ◽  
M. Varman ◽  
I. M. Rizwanul Fattah

Oxygenated additives modify the physicochemical properties of the biodiesel–diesel blends which influences the combustion mechanism in a way that improves the performance and emission characteristics significantly.

Author(s):  
Masoud Iranmanesh ◽  
J. P. Subrahmanyam ◽  
M. K. G. Babu

In this investigation, tests were conducted on a single cylinder DI diesel engine fueled with neat diesel and biodiesel as baseline fuel with addition of 5 to 20% DEE on a volume basis in steps of 5 vol.% as supplementary oxygenated fuel to analyze the simultaneous reduction of smoke and oxides of nitrogen. Some physicochemical properties of test fuels such as heating value, viscosity, specific gravity and distillation profile were also determined in accordance to the ASTM standards. The results obtained from the engine tests have shown a significant reduction in NOX emissions especially for biodiesel and a little decrease in smoke of DEE blends compared with baseline fuels. A global overview of the results has shown that the 5% DEE-Diesel fuel and 15% DEE-Biodiesel blend are the optimal blend based on performance and emission characteristics.


Author(s):  
Fatima Mohammed Ghanim ◽  
Ali Mohammed Hamdan Adam ◽  
Hazir Farouk

Abstract: There is growing interest to study the effect of blending various oxygenated additives with diesel or biodiesel fuel on engine performance and emission characteristics. This study aims to analyze the performance and exhaust emission of a four-stroke, four-cylinder diesel engine fueled with biodiesel-ethanol-diesel. Biodiesel was first produced from crude Jatropha oil, and then it was blended with ethanol and fossil diesel in different blend ratios (B10E10D80, B12.5E12.5D75, B15E15D70, B20E20D60 and B25E25D50). The engine performance and emission characteristics were studied at engine speeds ranging from 1200 to 2000 rpm. The results show that the brake specific fuel consumption increases while the brake power decreases as the percentage of biodiesel and ethanol increases in the blend. The exhaust emission analysis shows a reduction in CO2 emission and increase in NOx emission when the biodiesel -to- ethanol ratio increases in the blends, when compared with diesel as a reference fuel.


Sign in / Sign up

Export Citation Format

Share Document