Effect of dynamic disorder on charge carrier dynamics in Ph4DP and Ph4DTP molecules

RSC Advances ◽  
2015 ◽  
Vol 5 (48) ◽  
pp. 38722-38732 ◽  
Author(s):  
K. Navamani ◽  
K. Senthilkumar

Electronic structure calculations were used to study the charge transport and optical properties of 2,2′,6,6′-tetraphenyldipyranylidene (Ph4DP) and its sulfur analogue 2,2′,6,6′-tetraphenyldithiopyranylidene (Ph4DTP) based molecules.

CrystEngComm ◽  
2014 ◽  
Vol 16 (33) ◽  
pp. 7621-7625 ◽  
Author(s):  
Cody J. Gleason ◽  
Jordan M. Cox ◽  
Ian M. Walton ◽  
Jason B. Benedict

Single crystal structures, luminescent properties and electronic structure calculations of three polymorphs of the opto-electronic charge transport material 4,4′-bis(9-carbazolyl)biphenyl.


2011 ◽  
Vol 509 (17) ◽  
pp. 5230-5237 ◽  
Author(s):  
Altaf Hussain ◽  
Sitaram Aryal ◽  
Paul Rulis ◽  
M. Arshad Choudhry ◽  
Jun Chen ◽  
...  

1993 ◽  
Vol 328 ◽  
Author(s):  
KIM F. Ferris ◽  
W. D. Samuels ◽  
Y. Morita ◽  
G. J. Exarhos

ABSTRACTThe optical response of polyphosphazenes can be directly related to the π (out-of-plane) and π′ (in-plane) bonding interactions intrinsic to the electronic structure of these Materials. Altering this structure either by hydrogen bonding or absórbate effects, affects both the linear and nonlinear optical susceptibilities. In this paper, we have performed electronic structure calculations on the cyclic Molecules, P3N3 (NHCH3)6, P3N3(SCH3)6, P3N3 (OCH3)6 and P4N4 (NHCH3)8 as model systems for the polymer. Charge distribution arguments are discussed to explain the influence of a polarizing electric field on the π bonding systems, and are used to suggest methods to enhance their nonlinearities.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sung-Min Jung ◽  
Tae Hoon Lee ◽  
Sang Yun Bang ◽  
Soo Deok Han ◽  
Dong-Wook Shin ◽  
...  

AbstractsQuantum dot light-emitting diodes (QD-LEDs) are considered as competitive candidate for next-generation displays or lightings. Recent advances in the synthesis of core/shell quantum dots (QDs) and tailoring procedures for achieving their high quantum yield have facilitated the emergence of high-performance QD-LEDs. Meanwhile, the charge-carrier dynamics in QD-LED devices, which constitutes the remaining core research area for further improvement of QD-LEDs, is, however, poorly understood yet. Here, we propose a charge transport model in which the charge-carrier dynamics in QD-LEDs are comprehensively described by computer simulations. The charge-carrier injection is modelled by the carrier-capturing process, while the effect of electric fields at their interfaces is considered. The simulated electro-optical characteristics of QD-LEDs, such as the luminance, current density and external quantum efficiency (EQE) curves with varying voltages, show excellent agreement with experiments. Therefore, our computational method proposed here provides a useful means for designing and optimising high-performance QD-LED devices.


Author(s):  
Chang-Fu Huo ◽  
Rui Wen ◽  
Xiao-Qing Yan ◽  
De-Kang Li ◽  
Kai-Xuan Huang ◽  
...  

Palladium diselenide (PdSe2) recently emerged as a promising material with potential applications in electronic and optoelectronic devices due to its intriguing electronic and optical properties. The device performance is strongly...


2020 ◽  
Vol 8 (42) ◽  
pp. 14748-14756
Author(s):  
Anitha B. ◽  
Vijith K. P. ◽  
Akhil Alexander ◽  
Varun Srivastava ◽  
Manoj A. G. Namboothiry

Poor charge transport and extraction along with trap-assisted recombination limit the fill factor of solution processed SQ:PCBM solar cells.


Sign in / Sign up

Export Citation Format

Share Document