Polymorphism and the influence of crystal structure on the luminescence of the opto-electronic material 4,4′-bis(9-carbazolyl)biphenyl

CrystEngComm ◽  
2014 ◽  
Vol 16 (33) ◽  
pp. 7621-7625 ◽  
Author(s):  
Cody J. Gleason ◽  
Jordan M. Cox ◽  
Ian M. Walton ◽  
Jason B. Benedict

Single crystal structures, luminescent properties and electronic structure calculations of three polymorphs of the opto-electronic charge transport material 4,4′-bis(9-carbazolyl)biphenyl.

Author(s):  
Rongqing Shang ◽  
An T. Nguyen ◽  
Allan He ◽  
Susan M. Kauzlarich

A rare-earth-containing compound, ytterbium aluminium antimonide, Yb3AlSb3 (Ca3AlAs3-type structure), has been successfully synthesized within the Yb–Al–Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb2+)3[(Al1−)(1b – Sb2−)2(2b – Sb1−)], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb4 tetrahedra, [AlSb2Sb2/2]6−, with Yb2+ cations residing between the tetrahedra to provide charge balance. Herein, the synthetic conditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.


RSC Advances ◽  
2015 ◽  
Vol 5 (48) ◽  
pp. 38722-38732 ◽  
Author(s):  
K. Navamani ◽  
K. Senthilkumar

Electronic structure calculations were used to study the charge transport and optical properties of 2,2′,6,6′-tetraphenyldipyranylidene (Ph4DP) and its sulfur analogue 2,2′,6,6′-tetraphenyldithiopyranylidene (Ph4DTP) based molecules.


2013 ◽  
Vol 738-739 ◽  
pp. 15-19 ◽  
Author(s):  
Georgiy Firstov ◽  
Andrei Timoshevski ◽  
Yuri Koval ◽  
Sergey Yablonovski ◽  
Jan Van Humbeeck

This article is dedicated to the estimation of the relative stability for B2, B19`, B33 and Cm phase in ZrCu-ZrNi-ZrCo intermetallic compound row through the ab-initio electronic structure calculations and subsequent crystal structure Rietveld refinement. The information about electronic and crystal structure of phases in Zr-based intermetallics will allow selecting for this high temperature shape memory alloy such alloying elements that will significantly improve shape memory behavior through definite structural changes.


Author(s):  
Nazar Pavlyuk ◽  
Grygoriy Dmytriv ◽  
Volodymyr Pavlyuk ◽  
Helmut Ehrenberg

The new quaternary aluminide Li20Mg6Cu13Al42 was synthesized from the elements in a sealed tantalum crucible. The crystal structure was studied by single crystal and confirmed by X-ray powder diffraction. Li20Mg6Cu13Al42 {cI162, Im{\overline 3}, a = 13.8451 (2), R[F 2 > 2σ(F 2)] = 0.023} crystallizes as an ordered version of Mg32(Al,Zn)49 and Li—Cu—X (X = Al, Ga, Si) periodic crystals containing icosahedral clusters. The Li20Mg6Cu13Al42 structure can also be described as three-shell icosahedral clusters of [CuAl12@Li20Cu12@Al60], enclosed inside a distorted triacontahedron. The electronic structure calculations were performed by means of the TB-LMTO-ASA program and confirm the core–shell packing of these clusters. The isostructural compound of Li20Mg6Cu13Ga42 was found in a Li–Mg–Cu–Ga quaternary system.


Author(s):  
Nazar Zaremba ◽  
Ihor Muts ◽  
Volodymyr Pavlyuk ◽  
Viktor Hlukhyy ◽  
Rainer Pöttgen ◽  
...  

Abstract The title compounds have been synthesized by reaction of the elements in sealed tantalum crucibles in a muffle furnace using special annealing sequences. The crystal structures of YbNi2.31Al2.69 (R1 = 0.0100 for 212 F 2 values and 18 variables) and for ErNi2.23Al2.77 (R1 = 0.0154 for 255 F 2 values and 18 variables) were refined from single crystal X-ray data. They belong to the YNi2Al3 type (i3 superstructure of CaCu5) with the following crystallographic parameters: space group P 6 / m m m $P6/mmm$ , Pearson’s symbol hP18, Z = 3, a = 8.2723(12), c = 4.0672(8) Å, V = 241.03(8) Å3 for YbNi2.31Al2.69 and a = 8.9109(13), c = 4.0669(8) Å, V = 279.66(8) Å3 for ErNi2.23Al2.77. The crystal chemical discussion is supported by electronic structure calculations.


Sign in / Sign up

Export Citation Format

Share Document