Effect of processing additive on morphology and charge extraction in bulk-heterojunction solar cells

2014 ◽  
Vol 2 (36) ◽  
pp. 15052-15057 ◽  
Author(s):  
Dong Hwan Wang ◽  
Pierre-Olivier Morin ◽  
Chang-Lyoul Lee ◽  
Aung Ko Ko Kyaw ◽  
Mario Leclerc ◽  
...  

The BHJ film fabricated with processing additive (DIO) exhibits improved phase-separated morphology and efficient charge generation as evidenced by decreased PL and the associated lifetime. The additive also leads to increased charge transport and decreased series resistance by means of the balanced hole and electron charge carrier mobility.


2015 ◽  
Vol 27 (34) ◽  
pp. 4989-4996 ◽  
Author(s):  
Jason Seifter ◽  
Yanming Sun ◽  
Hyosung Choi ◽  
Byoung Hoon Lee ◽  
Thanh Luan Nguyen ◽  
...  


2012 ◽  
Vol 138 (1) ◽  
pp. 38-43
Author(s):  
Wenbin Guo ◽  
Liang Shen ◽  
Caixia Liu ◽  
Shengping Ruan ◽  
Weiyou Chen








2010 ◽  
Vol 1270 ◽  
Author(s):  
Mujeeb Ullah ◽  
Andrey K. Kadashchuk ◽  
Philipp Stadler ◽  
Alexander Kharchenko ◽  
Almantas Pivrikas ◽  
...  

AbstractThe critical factor that limits the efficiencies of organic electronic devices is the low charge carrier mobility which is attributed to disorder in organic films. In this work we study the effects of active film morphology on the charge transport in Organic Field Effect Transistors (OFETs). We fabricated the OFETs using different substrate temperature to grow different morphologies of C60 films by Hot Wall Epitaxy. Atomic Force Microscopy images and XRD results showed increasing grain size with increasing substrate temperature. An increase in field effect mobility was observed for different OFETs with increasing grain size in C60 films. The temperature dependence of charge carrier mobility in these devices followed the empirical relation named as Meyer-Neldel Rule and showed different activation energies for films with different degree of disorder. A shift in characteristic Meyer-Neldel energy was observed with changing C60 morphology which can be considered as an energetic disorder parameter.



Química Nova ◽  
2021 ◽  
Author(s):  
Ziran Chen ◽  
Yujin Zhang ◽  
Zhanrong He ◽  
Yuan Li ◽  
Meihao Xi ◽  
...  

Based on density functional theory, quantum chemical calculations of the charge-transport rates were performed for five disc-shaped coronene derivatives with varying numbers of fused thiophene rings, using different basis sets 6-31+G(d) and 6-311++G(d,p), hybrid functionals (B3LYP, M06-2X, CAM-B3LYP, WB97XD, M08-HX), and a dispersion-corrected hybrid functional (M06-2X+D3). Our results indicate that increasing the basis set and adding diffusion and polarisation functions had little effect on the molecular reorganisation energy, charge-transport matrix element t, and charge carrier mobility μ. The charge carrier mobility calculated using B3LYP were relatively large, whereas the results calculated using CAM-B3LYP and WB97XD were similar. Among the five coronene derivatives, molecule b with one thiophene ring could be candidates for a n-type organic semiconductor, and molecule c with two thiophene rings can be designed as a p-type semiconductor.



2019 ◽  
Vol 43 (31) ◽  
pp. 12440-12452
Author(s):  
Lijuan Wang ◽  
Jianhong Dai ◽  
Yan Song

Introducing different substituents into the pyrene core leads to different crystal packing motifs, and the charge carrier mobility can be effectively modulated by the introduction of electron-donating and electron-withdrawing groups.



2008 ◽  
Vol 1066 ◽  
Author(s):  
Kah Yoong Chan ◽  
Dietmar Knipp ◽  
Reinhard Carius ◽  
Helmut Stiebig

ABSTRACTThe influence of the crystalline volume fraction of hydrogenated microcrystalline silicon (mc-Si:H) on the performance of thin-film transistors (TFTs) processed at temperatures below 180 °C was investigated. TFTs employing mc-Si:H channel material prepared near the transition to amorphous growth exhibit the highest electron charge carrier mobilities exceeding 50 cm2/Vs. The influence of the crystalline volume fraction of the intrinsic mc-Si:H material on the transistor parameters like the charge carrier mobility and the contact resistance will be discussed.



Sign in / Sign up

Export Citation Format

Share Document