Influence of the Structural Properties of Microcrystalline Silicon on the Performance of High Mobility Thin-Film Transistors

2008 ◽  
Vol 1066 ◽  
Author(s):  
Kah Yoong Chan ◽  
Dietmar Knipp ◽  
Reinhard Carius ◽  
Helmut Stiebig

ABSTRACTThe influence of the crystalline volume fraction of hydrogenated microcrystalline silicon (mc-Si:H) on the performance of thin-film transistors (TFTs) processed at temperatures below 180 °C was investigated. TFTs employing mc-Si:H channel material prepared near the transition to amorphous growth exhibit the highest electron charge carrier mobilities exceeding 50 cm2/Vs. The influence of the crystalline volume fraction of the intrinsic mc-Si:H material on the transistor parameters like the charge carrier mobility and the contact resistance will be discussed.

2016 ◽  
Vol 7 (11) ◽  
pp. 2143-2150 ◽  
Author(s):  
Yao Li ◽  
He Wang ◽  
Xuesong Wang ◽  
Zuosen Shi ◽  
Donghang Yan ◽  
...  

A series of novel polymers as functional dielectric layers for pentacene thin-film transistors was synthesized and investigated to explore the relationship between the grain size and the charge carrier mobility with a single variable.


2019 ◽  
Vol 142 (2) ◽  
pp. 652-664 ◽  
Author(s):  
Andrew Wadsworth ◽  
Hu Chen ◽  
Karl J. Thorley ◽  
Camila Cendra ◽  
Mark Nikolka ◽  
...  

2012 ◽  
Vol 33 (6) ◽  
pp. 899-901 ◽  
Author(s):  
Tae-Jun Ha ◽  
Prashant Sonar ◽  
Ananth Dodabalapur

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yen-Tang Huang ◽  
Hung-Jung Hsu ◽  
Shin-Wei Liang ◽  
Cheng-Hang Hsu ◽  
Chuang-Chuang Tsai

Hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H) alloys were developed for application in Si-based thin-film solar cells. The effects of thegermane concentration(RGeH4)and thehydrogen ratio(RH2)on theμc-Si1-xGex:H alloys and the corresponding single-junction thin-film solar cells were studied. The behaviors of Ge incorporation in a-Si1-xGex:H andμc-Si1-xGex:H were also compared. Similar to a-Si1-xGex:H, the preferential Ge incorporation was observed inμc-Si1-xGex:H. Moreover, a higherRH2significantly promoted Ge incorporation for a-Si1-xGex:H, while the Ge content was not affected byRH2inμc-Si1-xGex:H growth. Furthermore, to eliminate the crystallization effect, the 0.9 μm thick absorbers with a similar crystalline volume fraction were applied. With the increasingRGeH4, the accompanied increase in Ge content ofμc-Si1-xGex:H narrowed the bandgap and markedly enhanced the long-wavelength absorption. However, the bias-dependent EQE measurement revealed that too much Ge incorporation in absorber deteriorated carrier collection and cell performance. With the optimization ofRH2andRGeH4, the single-junctionμc-Si1-xGex:H cell achieved an efficiency of 5.48%, corresponding to the crystalline volume fraction of 50.5% and Ge content of 13.2 at.%. Compared toμc-Si:H cell, the external quantum efficiency at 800 nm had a relative increase by 33.1%.


2013 ◽  
Vol 1501 ◽  
Author(s):  
Ronak Rahimi ◽  
D. Korakakis

ABSTRACTIn order to manufacture organic electronic devices with high performance, more detailed studies of the structure and the morphology of the organic materials as well as the underlying physical charge transport mechanisms are warranted. For instance, high efficiency organic thin film transistors (OTFTs) require materials with high charge carrier mobility [1, 2]. The parameters that determine the charge carrier mobility of the device include the structure of the first organic layer at the organic-dielectric interface as well as the morphology and the structural order of the other organic layers. Therefore, fundamental questions about structural properties of organic materials should be answered in order to optimize device performance [2-4].In this work, several bilayer structures of LiF/PTCDI-C8 and LiF/pentacene were prepared and their morphology and molecular structure were characterized using X-ray reflectivity (XRR) technique. In order to study the effects of the films’ structures and dielectric/organic interfacial properties on the device performance, OTFTs based on these bilayers were fabricated and characterized. It has been observed that PTCDI-C8 thin films have higher molecular packing in the LiF/PTCDI-C8 bilayer structure, which results in superior electrical characteristics for OTFTs based on this organic material. Devices with LiF/PTCDI-C8 bilayer exhibit about one order of magnitude higher output current (Ids) at a constant drain-source voltage (Vds) compared to the devices with LiF/pentacene bilayer. The observed differences in the electrical characteristics of these devices can be attributed to the effects of the dielectric/organic interface and the molecular structure of the organic layers.


Sign in / Sign up

Export Citation Format

Share Document