Device optimization of CsSnI2.95F0.05-based all-solid-state dye-sensitized solar cells with non-linear charge-carrier-density dependent photovoltaic behaviors

2015 ◽  
Vol 3 (3) ◽  
pp. 1222-1229 ◽  
Author(s):  
Shuai Ma ◽  
Mingwei Shang ◽  
Liyan Yu ◽  
Lifeng Dong

Interconnection between hole-transport material and nanoporous electrode is significant for CsSnI2.95F0.05-based all-solid-state DSCs; hole injection determines its non-linear photovoltaic response.

Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 198 ◽  
Author(s):  
Michèle Chevrier ◽  
Alberto Fattori ◽  
Laurent Lasser ◽  
Clément Kotras ◽  
Clémence Rose ◽  
...  

Chlorophyll a derivatives were integrated in “all solid-state” dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2′,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


2013 ◽  
Vol 1 (23) ◽  
pp. 6949 ◽  
Author(s):  
Miquel Planells ◽  
Antonio Abate ◽  
Derek J. Hollman ◽  
Samuel D. Stranks ◽  
Vishal Bharti ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2516
Author(s):  
Minseon Kong ◽  
Kyeong Seok Kim ◽  
Nguyen Van Nga ◽  
Yeonju Lee ◽  
Yu Seong Jeon ◽  
...  

The leakage and volatilization of liquid electrolytes limit the commercialization of dye-sensitized solar cells (DSCs). As solid-state (ss) hole-transporting materials, free from leakage and volatilization, biscarbazole-based polymers with different molecular weights (PBCzA-H (21,200 g/mol) and PBCzA-L (2450 g/mol)) were applied in combination with additives to produce ssDSCs. An ssDSC with PBCzA-H showed a better short-circuit current (Jsc), open-circuit voltage (Voc), and fill factor (FF) than a device with PBCzA-L, resulting in 38% higher conversion efficiency. Compared to the PBCzA-L, the PBCzA-H with a higher molecular weight showed faster hole mobility and larger conductivity, leading to elevations in Jsc via rapid hole transport, Voc via rapid hole extraction, and FF via lowered series and elevated shunt resistances. Thus, it is believed that PBCzA-H is a useful candidate for replacing liquid electrolytes.


2018 ◽  
Vol 29 (9) ◽  
pp. 7811-7819
Author(s):  
Pornpanarat Ardchongtong ◽  
Pantiwa Kumlangwan ◽  
Madsakorn Towannang ◽  
Pitphichaya Suksangrat ◽  
Pornjuk Srepusharawoot ◽  
...  

2013 ◽  
Vol 667 ◽  
pp. 317-323 ◽  
Author(s):  
Muhamad Nur Amalina ◽  
Mohamad Rusop

The improvement of solid-state dye sensitized solar cells requires identification and understanding of hole transport material properties at various deposition process that limit the energy conversion efficiency. A well-studied of this hole collectors properties, a high efficiency ss-DSSC is highly achievable. In this research work, the copper (I) iodide (CuI) had been deposited by spin coating and mist-atomization technique. The thin films characteristics of surface morphology and electrical properties and its effect to the photovoltaic performance were investigated. The thin films morphology examined by FESEM shows smaller CuI crystal size deposited by spin coating (S1) of ~30nm. Even though, smaller particle size of hole conductor is desirable in order to achieve high pore penetration, the thin film thickness and the electrical resistivity are also essential. The CuI thin films deposited by mist-atomization (M1) shows a low resistivity of 1.77 x 10-1 Ωcm which will greatly affect the device performance. The photovoltaic performance of ss-DSSC at different method CuI deposition shows the highest efficiency of 1.05% for sample (M1) while the ss-DSSC fabricated with S1 sample shows the lowest conversion efficiency of 0.02%. The appropriate crystals size of CuI, film thickness and the electrical resistivity greatly contributed to the high filling fraction of the porous TiO2 layer and hence the cells performance.


2009 ◽  
Vol 1211 ◽  
Author(s):  
Márcio S Góes ◽  
Francisco Fabregat-Santiago ◽  
Paulo R Bueno ◽  
Juan Bisquert

AbstractThis work reports on the changes of solid-state cells dye-sensitized solar cells performance with the variation of concentration of spiro-OMeTAD between 5% and 25% in the fabrication of the cell. The changes in charge recombination and capacitance correlate with the improvement of current-potential characteristics a increasing spiro-OMeTAD content, which is explained by reduction of transport resistance for hole transport, the increase of charge separation in the dye molecules, and importantly, with the increase of the β-factor in the recombination resistance, that causes a reduction of the diode ideality factor.


2014 ◽  
Vol 5 (3) ◽  
pp. 1401185 ◽  
Author(s):  
Bo Xu ◽  
Haining Tian ◽  
Lili Lin ◽  
Deping Qian ◽  
Hong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document