Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties

2014 ◽  
Vol 2 (32) ◽  
pp. 6582-6591 ◽  
Author(s):  
Zetao Zhu ◽  
Xin Sun ◽  
Hairong Xue ◽  
Hu Guo ◽  
Xiaoli Fan ◽  
...  

A carbon-bridge effect was adopted to explain the electromagnetic wave absorbing property related to the cross-linked framework structure of RGO–SCI composites.

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 135
Author(s):  
Zhengwei Qu ◽  
Yi Wang ◽  
Pingan Yang ◽  
Wei Zheng ◽  
Nan Li ◽  
...  

In this work, spherical flower-shaped composite carbonyl iron powder@MnO2 (CIP@MnO2) with CIP as the core and ultrathin MnO2 nanosheets as the shell was successfully prepared by a simple redox reaction to improve oxidation resistance and electromagnetic wave absorption properties. The microwave-absorbing properties of CIP@MnO2 composites with different filling ratios (mass fractions of 20%, 40%, and 60% after mixing with paraffin) were tested and analyzed. The experimental results show that compared with pure CIP, the CIP@MnO2 composites have smaller minimum reflection loss and a wider effective absorption bandwidth than CIP (RL < −20 dB). The sample filled with 40 wt% has the best comprehensive performance, the minimum reflection loss is −63.87 dB at 6.32 GHz, and the effective absorption bandwidth (RL < −20 dB) reaches 7.28 GHz in the range of 5.92 GHz–9.28 GHz and 11.2 GHz–15.12 GHz, which covers most C and X bands. Such excellent microwave absorption performance of the spherical flower-like CIP@MnO2 composites is attributed to the combined effect of multiple beneficial components and the electromagnetic attenuation ability generated by the special spherical flower-like structure. Furthermore, this spherical flower-like core–shell shape aids in the creation of discontinuous networks, which improve microwave incidence dispersion, polarize more interfacial charges, and allow electromagnetic wave absorption. In theory, this research could lead to a simple and efficient process for producing spherical flower-shaped CIP@MnO2 composites with high absorption, a wide band, and oxidation resistance for a wide range of applications.


RSC Advances ◽  
2014 ◽  
Vol 4 (105) ◽  
pp. 61219-61225 ◽  
Author(s):  
Biao Zhao ◽  
Gang Shao ◽  
Bingbing Fan ◽  
Wanyu Zhao ◽  
Yajun Xie ◽  
...  

The microwave absorption properties of ultrathin ZnS wall-coated Ni composites were superior to those of Ni microspheres and ZnS particles.


Author(s):  
Bin Du ◽  
Mei Cai ◽  
Xuan Wang ◽  
Junjie Qian ◽  
Chao He ◽  
...  

AbstractNowadays, metal oxide-based electromagnetic wave absorbing materials have aroused widely attentions in the application of telecommunication and electronics due to their selectable mechanical and outstanding dielectric properties. Herein, the binary ZnO/NiCo2O4 nanoparticles were successfully synthesized via hydrothermal reaction and the electromagnetic wave absorption properties of the composites were investigated in detail. As a result, benefiting from the dielectric loss, the as-obtained ZnO/NiCo2O4-7 samples possessed a minimum reflection loss value of −33.49 dB at 18.0 GHz with the thickness of 4.99 mm. This work indicates that ZnO/NiCo2O4 composites have the promising candidate applications in electromagnetic wave absorption materials in the future.


2017 ◽  
Vol 5 (16) ◽  
pp. 4068-4074 ◽  
Author(s):  
Xinliang Li ◽  
Xiaowei Yin ◽  
Meikang Han ◽  
Changqing Song ◽  
Hailong Xu ◽  
...  

Ti3C2TxMXenes modified within situgrown carbon nanotubes (CNTs) are fabricatedviaa simple catalytic chemical vapor deposition (CVD) process.


Sign in / Sign up

Export Citation Format

Share Document