Prediction of magnetic anisotropy of 5d transition metal-doped g-C3N4

2014 ◽  
Vol 2 (41) ◽  
pp. 8817-8821 ◽  
Author(s):  
Yun Zhang ◽  
Zhe Wang ◽  
Juexian Cao

Based on density functional theory, we investigated the magnetic properties of 5d transition metal (TM) atoms at the porous sites of graphene-like carbon nitride (g-C3N4).

2021 ◽  
Vol 197 ◽  
pp. 110613
Author(s):  
Ijeoma Cynthia Onyia ◽  
Stella Ogochukwu Ezeonu ◽  
Dmitri Bessarabov ◽  
Kingsley Onyebuchi Obodo

Author(s):  
Yogeshwaran Krishnan ◽  
Sateesh Bandaru ◽  
Niall J. English

A series of transition-metal-doped Fe1−xMxCo(PO4)4(010) and Fe3Co1−xMx(PO4)4(010) electro-catalyst surfaces (with M = Mn, Os, Ru, Rh and Ir) have been modelled via density-functional theory (DFT) to gauge their oxygen-evolution reactions (OER).


Author(s):  
Mohamed Helal ◽  
H. M. El-Sayed ◽  
Ahmed A Maarouf ◽  
Mohamed Fadlallah

Motivated by the successful preparation of two-dimensional transition metal dichalcogenides (2D- TMDs) nanomeshes in the last three years, we use density functional theory (DFT) to study the structural stability, mechanical,...


2017 ◽  
Vol 19 (36) ◽  
pp. 24594-24604 ◽  
Author(s):  
Jing Pan ◽  
Rui Wang ◽  
Xiaoyu Zhou ◽  
Jiansheng Zhong ◽  
Xiaoyong Xu ◽  
...  

The electronic structure, magnetic properties and stability of transition-metal (TM) doped armchair MoS2 nanoribbons (AMoS2NRs) with full hydrogen passivation have been investigated using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document