scholarly journals A star-shaped D–π–A small molecule based on a tris(2-methoxyphenyl)amine core for highly efficient solution-processed organic solar cells

2014 ◽  
Vol 2 (36) ◽  
pp. 7614-7620 ◽  
Author(s):  
Jie Min ◽  
Yuriy N. Luponosov ◽  
Alexander N. Solodukhin ◽  
Nina Kausch-Busies ◽  
Sergei A. Ponomarenko ◽  
...  

A star-shaped D–π–A small molecule based on a tris(2-methoxyphenyl)amine donor unit for solution-processed organic solar cells achieves a power conversion efficiency up to 4.38%.

2017 ◽  
Vol 1 (11) ◽  
pp. 2349-2355 ◽  
Author(s):  
Wuyue Liu ◽  
Zichun Zhou ◽  
Thomas Vergote ◽  
Shengjie Xu ◽  
Xiaozhang Zhu

A molecular donor STB-4 with a dithieno[2,3-d′:2′,3′-d′]benzo[1,2-b:4′,5′-b′]dithiophene core was synthesized for organic solar cells with a power conversion efficiency of 8.17%.


2015 ◽  
Vol 3 (5) ◽  
pp. 1910-1914 ◽  
Author(s):  
Huitao Bai ◽  
Yifan Wang ◽  
Pei Cheng ◽  
Jiayu Wang ◽  
Yao Wu ◽  
...  

A novel small molecule based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone was synthesized and used as an electron acceptor in solution processed organic solar cells, which exhibited a power conversion efficiency as high as 3.93%.


Author(s):  
Jinseck Kim ◽  
Minju Kyeong ◽  
Jong-Woon Ha ◽  
Hyungju Ahn ◽  
Juhyoung Jung ◽  
...  

Owing to the development of highly efficient donor and non-fullerene small-molecule acceptor materials, the power conversion efficiency (PCE) of organic solar cells (OSCs) has reached 17%−19%. However, most of the...


2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


2015 ◽  
Vol 6 (6) ◽  
pp. 1502109 ◽  
Author(s):  
Tao Liu ◽  
Lijun Huo ◽  
Xiaobo Sun ◽  
Bingbing Fan ◽  
Yunhao Cai ◽  
...  

2015 ◽  
Vol 3 (2) ◽  
pp. 447-452 ◽  
Author(s):  
Yifan Wang ◽  
Xingang Zhao ◽  
Xiaowei Zhan

Inverted organic solar cells based on a small molecule donor and a polymer acceptor were fabricated using a layer by layer solution process, which exhibited a power conversion efficiency up to 1.12%.


Sign in / Sign up

Export Citation Format

Share Document