Exploring silver ionic liquids for reaction-based gas sensing on a quartz crystal microbalance

The Analyst ◽  
2015 ◽  
Vol 140 (18) ◽  
pp. 6245-6249 ◽  
Author(s):  
Hsin-Yi Li ◽  
Tzu-Hsuan Hsu ◽  
Chien-Yuan Chen ◽  
Ming-Chung Tseng ◽  
Yen-Ho Chu

This work involves direct synthesis of functional silver ionic liquids in water, and is label-free and chemoselective with superior reactivity toward targeted gases and, most significantly, insensitive to moisture.

2015 ◽  
Vol 34 (3-4) ◽  
Author(s):  
Yi-Pin Chang ◽  
Wei-Chun Liu ◽  
Ming-Chung Tseng ◽  
Yen-Ho Chu

AbstractGas sensing technologies are of importance for a variety of industrial, environmental, medical, and even military applications. Many gases, such as man-made or naturally occurring volatile organic compounds (VOCs), can adversely affect human health or cause harm to the environment. Recent advances in “designer solvents” and sensor technologies have facilitated the development of ultrasensitive gas sensing ionic liquids (SILs) based on quartz crystal microbalance (QCM) that can real-time detect and discriminate VOCs. Based on specific chemical reactions at room temperature, thin-coated functionalized ionic liquids on quartz chips are able to capture VOCs chemoselectively with a single-digit parts-per-billion detection limit. The amalgamation of tailor-made functional SILs and QCM results in a new class of qualitative and semiquantitative gas sensing device, which represents a prototype of electronic nose. This review vignettes some conventional gas sensing approaches and collates latest research results in the exploration of SIL-on-QCM chips and gives an account of the state-of-the-art gas sensing technology.


Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 159
Author(s):  
Satit Rodphukdeekul ◽  
Miyuki Tabata ◽  
Chindanai Ratanaporncharoen ◽  
Yasuo Takeuchi ◽  
Pakpum Somboon ◽  
...  

Periodontal disease is an inflammatory disorder that is triggered by bacterial plaque and causes the destruction of the tooth-supporting tissues leading to tooth loss. Several bacteria species, including Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, are considered to be associated with severe periodontal conditions. In this study, we demonstrated a quartz crystal microbalance (QCM) immunoassay for quantitative assessment of the periodontal bacteria, A. actinomycetemcomitans. An immunosensor was constructed using a self-assembled monolayer of 11-mercaptoundecanoic acid (11-MUA) on the gold surface of a QCM chip. The 11-MUA layer was evaluated using a cyclic voltammetry technique to determine its mass and packing density. Next, a monoclonal antibody was covalently linked to 11-MUA using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide to act as the biorecognition element. The specificity of the monoclonal antibody was confirmed by an enzyme-linked immunosorbent assay. A calibration curve, for the relationship between the frequency shifts and number of bacteria, was used to calculate the number of A. actinomycetemcomitans bacteria in a test sample. Based on a regression equation, the lower detection limit was 800 cells, with a dynamic range up to 2.32 × 106 cells. Thus, the QCM biosensor in this study provides a sensitive and label-free method for quantitative analysis of periodontal bacteria. The method can be used in various biosensing assays for practical application and routine detection of periodontitis pathogens.


2016 ◽  
Vol 657 ◽  
pp. 691-696 ◽  
Author(s):  
Hu Wang ◽  
Xiaoxiong Liu ◽  
Juan Xie ◽  
Ming Duan ◽  
Junlei Tang

2006 ◽  
Vol 52 (12) ◽  
pp. 2273-2280 ◽  
Author(s):  
Yang Luo ◽  
Ming Chen ◽  
Qianjun Wen ◽  
Meng Zhao ◽  
Bo Zhang ◽  
...  

Abstract Background: Urinary proteins are predictive and prognostic markers for diabetes nephropathy. Conventional methods for the quantification of urinary proteins, however, are time-consuming, and most require radioactive labeling. We designed a label-free piezoelectric quartz crystal microbalance (QCM) immunosensor array to simultaneously quantify 4 urinary proteins. Methods: We constructed a 2 × 5 model piezoelectric immunosensor array fabricated with disposable quartz crystals for quantification of microalbumin, α1-microglobulin, β2-microglobulin, and IgG in urine. We made calibration curves after immobilization of antibodies at an optimal concentration and then evaluated the performance characteristics of the immunosensor with a series of tests. In addition, we measured 124 urine samples with both QCM immunosensor array and immunonephelometry to assess the correlation between the 2 methods. Results: With the QCM immunosensor array, we were able to quantify 4 urinary proteins within 15 min. This method had an analytical interval of 0.01–60 mg/L. The intraassay and interassay imprecisions (CVs) were <10%, and the relative recovery rates were 90.3%–109.1%. Nonspecificity of the immunosensor was insignificant (frequency shifts <20 Hz). ROC analyses indicated sensitivities were ≥95.8% and, specificities were ≥76.3%. Bland–Altman difference plots showed the immunosensor array to be highly comparable to immunonephelometry. Conclusions: The QCM system we designed has the advantages of being rapid, label free, and highly sensitive and thus can be a useful supplement to commercial assay methods in clinical chemistry.


2017 ◽  
Vol 50 (12) ◽  
pp. 1912-1925 ◽  
Author(s):  
Watcharinthon Theansun ◽  
Jittawat Sripratumporn ◽  
Chamras Promptmas

Author(s):  
Tiparat Potipitak ◽  
Warunee Ngrenngarmlert ◽  
Chamras Promptmas ◽  
Sirinart Chomean ◽  
Wanida Ittarat

AbstractMalaria infection withA label-free DNA biosensor based on quartz crystal microbalance (QCM) to diagnose and genotypeThe newly developed QCM was tested for its diagnosis ability using both malaria laboratory strains and clinical isolates. The biosensor was sensitive at the sub-nanogram level, specific for onlyThe dual function QCM was successfully developed with high sensitivity and specificity, and was cost-effective, stable and field adaptable.


Sign in / Sign up

Export Citation Format

Share Document