Reviews in Analytical Chemistry
Latest Publications


TOTAL DOCUMENTS

562
(FIVE YEARS 48)

H-INDEX

22
(FIVE YEARS 2)

Published By Walter De Gruyter Gmbh

2191-0189, 0793-0135

2022 ◽  
Vol 41 (1) ◽  
pp. 34-62
Author(s):  
Andrea Dandić ◽  
Katarina Rajkovača ◽  
Marija Jozanović ◽  
Iva Pukleš ◽  
Aleksandar Széchenyi ◽  
...  

Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are the first choice of treatment for rheumatic disorders and other degenerative inflammatory diseases. One of them, indomethacin (INDO), is highlighted in this study. With its analgesic, antipyretic, and anti-inflammatory properties, it is one of the most powerful drugs used in various clinical trials and therapies related to the mechanism of blocking prostaglandin synthesis, thus reducing and eliminating many inflammatory conditions in patients. To ensure the efficacy and safety of this drug in pharmaceutical and clinical use, precise product quality control is required. Such control is performed with routine pharmaceutical analysis using various chemical methods by which INDO is identified as a separate active ingredient in the multicomponent system of a complete pharmaceutical form. In addition, the determination of INDO is important in clinical practice, where its concentration is determined in different biological samples, ensuring better monitoring of a particular therapy. The most commonly used methods for the determination of INDO are high-performance liquid chromatography (37% of developed methods), voltammetry (16% of developed methods), and UV spectroscopy (11% of developed methods). However, each of these methods must provide precise validation parameters. A combination of analytical methods can lead to more precise results and safer application in practice.


2022 ◽  
Vol 41 (1) ◽  
pp. 21-33
Author(s):  
Khairi Mustafa Fahelelbom ◽  
Abdullah Saleh ◽  
Moawia M. A. Al-Tabakha ◽  
Akram A. Ashames

Abstract Qualitative Fourier transform infrared (FTIR) spectroscopy has long been established and implemented in a wide variety of fields including pharmaceutical, biomedical, and clinical fields. While the quantitative applications are yet to reach their full potential, this technique is flourishing. It is tempting to shed light on modern engaging and the applicability of analytical quantitative FTIR spectroscopy in the aforementioned fields. More importantly, the credibility, validity, and generality of the application will be thoroughly demonstrated by reviewing the latest published work in the scientific literature. Utilizing FTIR spectroscopy in a quantitative approach in pharmaceutical, biomedical, and interdisciplinary fields has many undeniable advantages over traditional procedures. An insightful account will be undertaken in this regard. The technique will be introduced as an appealing alternative to common methods such as high performance liquid chromatography. It is anticipated that the review will offer researchers an update of the current status and prospect on the subject among the pharmacy and biomedical sciences both in academic and industrial fields.


2021 ◽  
Vol 41 (1) ◽  
pp. 10-20
Author(s):  
Xun Gao ◽  
Kexin Chen ◽  
Yue Zhang ◽  
Miaomiao Chi

Abstract This study was designed to determine the 11 metal elements (Al, Cr, Mn, Fe, As, Ni, Cu, Zn, Cd, Sb, and Pb) in soy sauce and their migration from the containing glass bottles. Inductively coupled plasma mass spectrometry (ICP-MS) was applied for the determination of the elements and one-factor-at-a-time method was employed for optimizing the ICP-MS parameters in migration experiment and microwave digestion experiment. The developed method was successfully applied to determine the content of 11 elements. The results showed that the experiment had excellent correlation and sensitivity. The accuracy of the elements in the migration study and test of soy sauce itself ranging from 84.25% to 118.75% was satisfied, and the precision of the method was validated and the RSD was no more than 15.5%. The concentration of all the detected metal elements migrated from the glass bottles were between 0.3450 and 2.398 ng·mL−1, and the risk assessment indicated that the metal elements in soy sauce had no risk to the public health. The proposed methodology in this study was successfully applied for the quality control for metal elements in soy sauce and the containing glass bottles for the first time, and a research method suitable for soy sauce consumption process control and risk assessment has been established.


2021 ◽  
Vol 41 (1) ◽  
pp. 1-9
Author(s):  
Oksana Grinevich ◽  
Zoya Khesina ◽  
Alexey Buryak

Abstract Porous graphitic carbon (PGC) is a widely used stationary phase for reversed-phase high-performance liquid chromatography (HPLC) that allows separation of structurally similar compounds retained in mixed form on a flat graphite surface. Such a stationary phase can be used in analytical chemistry to provide good separation and selectivity in pesticide monitoring. In this article, we studied the chromatographic behavior of five common triazine herbicides (simazine, atrazine, desmetryn, propazine, prometryn) on PGC vis-à-vis octadecyl-functionalized silica gel (ODS). It was found that the herbicides studied have an abnormal elution order on PGC compared to ODS. PGC was also characterized by higher selectivity of analyte separation. This behavior of triazine herbicides on PGC cannot be explained either with the help of existing theory or by mathematical modeling of adsorption processes on graphite. Therefore, we have proposed a possible retention mechanism, explaining the effects observed, due to the shielding of the amino group in the triazine ring by alkyl substituents, which decreases the “polar retention effect” of PGC. Satisfactory separation efficacy was obtained with the proposed analytical method, using convenient UV-detection and without resort to laborious techniques such as HPLC coupled with mass spectrometry.


2021 ◽  
Vol 40 (1) ◽  
pp. 220-252
Author(s):  
Giovanni D’Orazio ◽  
Chiara Fanali ◽  
Chiara Dal Bosco ◽  
Alessandra Gentili ◽  
Salvatore Fanali

Abstract The determination and separation of enantiomers is an interesting and important topic of research in various fields, e.g., biochemistry, food science, pharmaceutical industry, environment, etc. Although these compounds possess identical physicochemical properties, a pair of enantiomers often has different pharmacological, toxicological, and metabolic activities. For this reason, chiral discrimination by using chromatographic and electromigration techniques has become an urgent need in the pharmaceutical field. This review intends to offer the “state of the art” about the separation of chiral antifungal drugs and several related precursors by both liquid and gas chromatography, as well as electromigration methods. This overview is organized into two sections. The first one describes general considerations on chiral antifungal drugs. The second part deals with the main analytical methods for the enantiomeric discrimination of these drugs, including a brief description of chiral selectors and stationary phases. Moreover, many recent applications attesting the great interest of analytical chemists in the field of enantiomeric separation are presented.


2021 ◽  
Vol 40 (1) ◽  
pp. 323-333
Author(s):  
Mona M. Abdel Moneim ◽  
Miranda F. Kamal ◽  
Mohamed M. A. Hamdy

Abstract The widespread coronavirus 2019 (COVID-19) pandemic, attributed to the severe acute respiratory syndrome coronavirus-2, has resulted in global lockdowns and excess mortality. Remdesivir (RM) is the first and only antiviral drug that the US Food and Drug Administration (FDA) has approved so far for COVID-19. The treatment protocol involves multidrug combinations, basically depending on RM, in addition to antimicrobials, antipyretics, corticosteroids, and anticoagulants. This study develops and validates sensitive and selective RM screening in spiked human plasma in the presence of commonly co-administered drugs. Hydroxychloroquine, azithromycin, paracetamol, dexamethasone, and anticoagulants (rivaroxaban and edoxaban) have been detected simultaneously with RM in the same biological matrix. Separation has been efficiently achieved by simple reversed phase HPLC with dual detectors. Diode array detector and fluorimetric detection have been used to compare their sensitivity and selectivity. Both assays have been validated according to bioanalytical FDA validation parameters. Chromatographic separation and quantitation of RM along with concomitant drugs instantly bioscreen COVID-19 multiple therapy medication in 10 min run time. Furthermore, the proposed in vitro study takes the lead for prospective testing of possible drug–drug interactions that alter the pharmacokinetic profiles of drugs.


2021 ◽  
Vol 40 (1) ◽  
pp. 293-311
Author(s):  
Apurva Anand Singh ◽  
Gunasekaran Rajeswari ◽  
Louis Anto Nirmal ◽  
Samuel Jacob

Abstract Allelopathy, a complex phenomenon has unveiled both stimulatory and inhibitory effects in plant processes that are mediated by the release of certain chemical compounds commonly known as allelochemicals. Allelochemicals, a form of bioactive secondary metabolites are produced by a diverse group of plants and microbes in response to biotic and abiotic stress. It ranges from a simple hydrocarbon to complex polycyclic aromatic compounds like phenol, flavonoids, tannins, steroids, amino acids, alkaloids and quinones. These plant bioactive compounds are released into the environment via decomposition, exudation, leaching and volatilization that play a significant role in regulating the intra-specific or inter-specific relations with counterparts. A wide variety of methods has been proposed for analyzing the basic mechanism and overall effect of allelochemicals. However, the lack of a reliable and effective method to identify their molecular mode of action and their modulation in the metabolic pathway still remains as a great challenge. From a commercial perspective, these allelochemicals are deemed to be better candidates for green natural herbicides and weedicides that are proven to be environment friendly, unlike synthetic chemicals. In order to pave a way for the economic viability of these chemicals, a basic understanding of their chemistry is inevitable. This review article is focused to give an in-depth understanding of metabolic pathways genes responsible for the elicitation/secretion and the adoption of a suitable downstream process and analytical techniques that can intensify the process.


2021 ◽  
Vol 40 (1) ◽  
pp. 127-135
Author(s):  
Khaled Elgendy ◽  
Mohamed A.F. Elmosallamy ◽  
Moustafa K. Soltan ◽  
Alaa S. Amin ◽  
Dina S. Elshaprawy

Abstract Two new potentiometric sensors were created for the quantification of bisoprolol fumarate and alverine citrate in bulk pharmaceutical dosage forms and human serum. Bisoprolol and alverine sensors were manufactured by combining potassium tetrakis (p-chlorophenyl) borate ion pairs to serve as electroactive substances, plasticized poly (vinyl chloride) matrix membranes, and o-nitrophenyl octyl ether. They demonstrated high responses over the concentration ranges of 1.0×10−6 to 1.0×10−2 mol L−1 bisoprolol and alverine with close to Nernstian cationic slopes of 52 and 56 mV decade−1, respectively. The detection limits for bisoprolol and alverine were 2.6×10−6 and 1.75×10−6 mol L−1, respectively. For both medications, the response time was instantaneous (2.0 s). The working pH ranges for bisoprolol and alverine were 4.50–8.50 and 2.00–8.80, respectively. For both sensors, the life cycle was long (3 months). The sensors were used in pharmaceutical dosage types for the assay of bisoprolol and alverine, recording average recoveries of 99.40% and 99.98% respectively and were also successfully used for estimating the two drugs in human serum with an average recovery of 99.60% for both drugs. For all multiple staged interfering materials, the reported latest potentiometric sensor methods displayed high selectivity. The current sensor obtained a high percentage recovery and an excellent relative standard deviation compared with those obtained from previously published methods.


2021 ◽  
Vol 40 (1) ◽  
pp. 136-143
Author(s):  
Amira A. Elabd ◽  
Olivea A. Elhefnawy

Abstract A new organic molecule probe has been introduced as a “turn-off” fluorescent sensor to detect trace quantities of UO2 2+ in the presence of several transition metals with promising results. The procedure is based on quenching the fluorescence intensity of 6-chloro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide (L) in the presence of various UO2 2+ concentrations in methanol. The UO2 2+ and L species interact through electrostatic interaction between negatively charged nitrogen atom of the sulfonamide group of L and positively charged UO2 2+, thus facilitating the non-radiative recombination of UO2 2+ and L through the charge transfer or electron transfer processes and leading to the fluorescence quenching of L. The mechanism of quenching was addressed and proved to be static quenching. The impressive quenching of the fluorescence intensity of L by different concentrations of UO2 2+ has been successfully used as a new sensor to measure UO2 2+ in methanol at λ ex = 340 nm, λ em = 380 nm with a linear dynamic range of 0.08–5.0 µM and detection limit and quantification limit of 0.0276 and 0.0837 µM, respectively. The L sensor shows interesting advantages compared to other developed sensors with adequate performance, such as broader linear range and lower detection limit, selectivity, and simplicity, which illustrate its useful practical use.


2021 ◽  
Vol 40 (1) ◽  
pp. 173-186
Author(s):  
Hualan Zhou ◽  
Xiaodi Li ◽  
Lehui Wang ◽  
Yingfang Liang ◽  
Aikedan Jialading ◽  
...  

Abstract Food safety and quality have gained much attention and the capability to evaluate food quality and safety in a sensitive, rapid, and reliable manner is of great importance in the food industry. Surface-enhanced Raman scattering (SERS) with the advantages of excellent sensitivity, high selectivity, non-destructive nature, and significant enhancement to identify the target has demonstrated a great potential for quick detection of the food sample. The enhancement of Raman signals for SERS is not only related to the interactions between substrates and samples but also the functionalization of substrates to gain SERS active substrates. In the present review, this paper summarized the progress of SERS quantitative analysis and application in food safety detection. The future trends and perspectives were also given.


Sign in / Sign up

Export Citation Format

Share Document