scholarly journals Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study

2016 ◽  
Vol 18 (3) ◽  
pp. 2192-2201 ◽  
Author(s):  
Thomas D. Bennett ◽  
Tanya K. Todorova ◽  
Emma F. Baxter ◽  
David G. Reid ◽  
Christel Gervais ◽  
...  

Ball-milling amorphization of UiO-66, MIL-140B and MIL-140C was observed to proceed by metal–ligand bond breaking, and linked to the generation of successive defects.

2020 ◽  
Author(s):  
Adam Sapnik ◽  
Duncan Johnstone ◽  
Sean M. Collins ◽  
Giorgio Divitini ◽  
Alice Bumstead ◽  
...  

<p>Defect engineering is a powerful tool that can be used to tailor the properties of metal–organic frameworks (MOFs). Here, we incorporate defects through ball milling to systematically vary the porosity of the giant pore MOF, MIL-100 (Fe). We show that milling leads to the breaking of metal–linker bonds, generating more coordinatively unsaturated metal sites, and ultimately causes amorphisation. Pair distribution function analysis shows the hierarchical local structure is partially</p><p>retained, even in the amorphised material. We find that the solvent toluene stabilises the MIL-100 (Fe) framework against collapse and leads to a substantial rentention of porosity over the non-stabilised material.</p>


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Cheng-An Tao ◽  
Jian-Fang Wang

Metal-organic frameworks (MOFs) have been used in adsorption, separation, catalysis, sensing, photo/electro/magnetics, and biomedical fields because of their unique periodic pore structure and excellent properties and have become a hot research topic in recent years. Ball milling is a method of small pollution, short time-consumption, and large-scale synthesis of MOFs. In recent years, many important advances have been made. In this paper, the influencing factors of MOFs synthesized by grinding were reviewed systematically from four aspects: auxiliary additives, metal sources, organic linkers, and reaction specific conditions (such as frequency, reaction time, and mass ratio of ball and raw materials). The prospect for the future development of the synthesis of MOFs by grinding was proposed.


RSC Advances ◽  
2015 ◽  
Vol 5 (34) ◽  
pp. 26735-26748 ◽  
Author(s):  
Saumitra Saha ◽  
Udo Becker

A series of uranyl containing aliphatic dicarboxylate structures is studied using computational methods. Our computational study provides a detailed analysis of these MOFs and explores the effect of linkers on their properties for the first time.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tz-Han Wei ◽  
Shi-Hong Wu ◽  
Yi-Da Huang ◽  
Wei-Shang Lo ◽  
Benjamin P. Williams ◽  
...  

Abstract Metal–organic frameworks (MOFs) have recently garnered consideration as an attractive solid substrate because the highly tunable MOF framework can not only serve as an inert host but also enhance the selectivity, stability, and/or activity of the enzymes. Herein, we demonstrate the advantages of using a mechanochemical strategy to encapsulate enzymes into robust MOFs. A range of enzymes, namely β-glucosidase, invertase, β-galactosidase, and catalase, are encapsulated in ZIF-8, UiO-66-NH2, or Zn-MOF-74 via a ball milling process. The solid-state mechanochemical strategy is rapid and minimizes the use of organic solvents and strong acids during synthesis, allowing the encapsulation of enzymes into three prototypical robust MOFs while maintaining enzymatic biological activity. The activity of encapsulated enzyme is demonstrated and shows increased resistance to proteases, even under acidic conditions. This work represents a step toward the creation of a suite of biomolecule-in-MOF composites for application in a variety of industrial processes.


Sign in / Sign up

Export Citation Format

Share Document