Photonic vortices induced in a single-component phototropic liquid crystal

2016 ◽  
Vol 18 (5) ◽  
pp. 3832-3837 ◽  
Author(s):  
K. Dradrach ◽  
S. Bartkiewicz ◽  
A. Miniewicz

Using the direct coupling mechanism of light with a liquid via molecular absorption, i.e. the opto-thermal effect, we demonstrate the formation of well-controlled three-dimensional circular flows, i.e. a toroidal vortex, inside the liquid crystal (LC) droplet placed on a glass plate in its isotropic phase.

2020 ◽  
Vol 6 (39) ◽  
pp. eabc0034 ◽  
Author(s):  
Zijun Wang ◽  
Zhijian Wang ◽  
Yue Zheng ◽  
Qiguang He ◽  
Yang Wang ◽  
...  

As a promising actuating material, liquid crystal elastomer (LCE) has been intensively explored in building diverse active structures and devices. Recently, direct ink writing technique has been developed to print LCE structures with various geometries and actuation behaviors. Despite the advancement in printing LCE, it remains challenging to print three-dimensional (3D) LCE structures with graded properties. Here, we report a facile method to tailor both the actuation behavior and mechanical properties of printed LCE filaments by varying printing parameters. On the basis of the comprehensive processing-structure-property relationship, we propose a simple strategy to print functionally graded LCEs, which greatly increases the design space for creating active morphing structures. We further demonstrate mitigation of stress concentration near the interface between an actuatable LCE tube and a rigid glass plate through gradient printing. The strategy developed here will facilitate potential applications of LCEs in different fields.


Sign in / Sign up

Export Citation Format

Share Document