scholarly journals Kinetic isotope effects for fast deuterium and proton exchange rates

2016 ◽  
Vol 18 (15) ◽  
pp. 10144-10151 ◽  
Author(s):  
Estel Canet ◽  
Daniele Mammoli ◽  
Pavel Kadeřávek ◽  
Philippe Pelupessy ◽  
Geoffrey Bodenhausen

By monitoring the effect of deuterium decoupling on the decay of transverse 15N magnetization in D–15N spin pairs during multiple-refocusing echo sequences, we have determined fast D–D exchange rates kD and compared them with fast H–H exchange rates kH in tryptophan to determine the kinetic isotope effect as a function of pH and temperature.

1960 ◽  
Vol 38 (11) ◽  
pp. 2171-2177 ◽  
Author(s):  
K. T. Leffek ◽  
J. A. Llewellyn ◽  
R. E. Robertson

The secondary β-deuterium isotope effects have been measured in the water solvolytic reaction of alkyl halides and sulphonates for primary, secondary, and tertiary species. In every case the kinetic isotope effect was greater than unity (kH/kD > 1). This isotope effect may be associated with varying degrees of hyperconjugation or altered non-bonding intramolecular forces. The experiments make it difficult to decide which effect is most important.


1980 ◽  
Vol 58 (16) ◽  
pp. 1738-1750 ◽  
Author(s):  
Nick Henry Werstiuk ◽  
George Timmins ◽  
Frank Peter Cappelli

A series of specifically deuterated syn-7-chloro-, anti-7-chloro-, syn-7-bromo-, and anti-7-bromo-exo-2-norbornyl brosylates have been prepared and solvolyzed in NaOAc-buffered 80:20 EtOH–H2O. For solvolysis at 25 °C the γ-kinetic isotope effects (KIE's) for syn-7-chloro-exo-2-norbornyl brosylate-endo-6-d (1e), anti-7-chloro-exo-2-norbornyl brosylate-endo-6-d (2c), syn-7-bromo-exo-2-norbornyl brosylate-endo-6-d (1f), anti-7-bromo-exo-2-norbornyl brosylate-endo-6-d (2d), syn-7-chloro-exo-2-norbornyl brosylate-exo,exo-5,6-d2 (1g), anti-7-chloro-exo-2-norbornyl brosylate-exo,exo-5,6-d2 (2e) are 1.125 ± 0.007, 1.128 ± 0.005, 1.063 ± 0.008, 1.149 ± 0.020, 1.119 ± 0.011, and 1.115 ± 0.013, respectively. There is no detectable γ-kinetic isotope effect for solvolysis of anti-7-chloro-endo-2-norbornyl brosylate-endo-6-d(3a) and the β-KIE for anti-7-chloro-exo-2-norbornyl brosylate-exo-3-d(4a) is 1.111 ± 0.011. From a consideration of the possible sources of the unusually large secondary KIE's, we conclude that the exo-6-d and endo-6-d γ-KIE's likely are derived from a combination of effects rather than from participation of the C1—C6 bond in the ionization step.


2004 ◽  
Vol 82 (9) ◽  
pp. 1336-1340
Author(s):  
Xicai Huang ◽  
Andrew J Bennet

The aqueous ethanolysis reactions of adamantylideneadamantyl tosylate, -bromide, and -iodide (1-OTs, 1-Br and 1-I) were monitored as a function of ionic strength. Special salt effects are observed during the solvolyses of both homoallylic halides, but not in the case of the tosylate 1-OTs. The measured α-secondary deuterium kinetic isotope effects for the solvolysis of 1-Br in 80:20 and 60:40 v/v ethanol–water mixtures at 25 °C are 1.110 ± 0.018 and 1.146 ± 0.009, respectively. The above results are consistent with the homoallylic halides reacting via a virtual transition state in which both formation and dissociation of a solvent-separated ion pair are partially rate-determining. While the corresponding transition state for adamantylideneadamantyl tosylate involves formation of the solvent-separated ion pair.Key words: salt effects, kinetic isotope effect, internal return, solvolysis, ion pairs.


1969 ◽  
Vol 47 (13) ◽  
pp. 2506-2509 ◽  
Author(s):  
Jan Bron ◽  
J. B. Stothers

As a test of our earlier interpretations of the 13C kinetic isotope effects found for alcoholysis of 1-phenyl-1-bromoethane, we have examined the effect of the p-methyl and p-bromo substituents on the 13C fractionations in ethanol and methanol. Isotopic fractionation at the α-carbon is found to be substituent dependent, and the observed trend is consistent with the proposal that stabilization of the cationic center by the phenyl ring is a major factor governing the isotope effect in these systems. The first example of an inverse primary kinetic isotope effect for carbon (k12/k13 < 1) is described.


1986 ◽  
Vol 39 (2) ◽  
pp. 281 ◽  
Author(s):  
RK Norris ◽  
TA Wright

The eliminations of nitrous acid from the compounds (1) and (6) are E2 processes, which proceed with a large primary kinetic isotope effect and with antiperiplanar stereochemistry. The rate of elimination of HNO2 from (1) is intermediate between the rate of elimination of HCl from (4) and HBr from (5). This order of nucleofugality , namely Br- > NO2- > Cl -, results from a more positive entropy of activation for the elimination of nitrous acid. The presence of an α-chlorine, as in compounds (8), (28) and (29), leads to elimination processes which are E1cB-like, with low primary kinetic isotope effects and with lack of stereospecificity.


2005 ◽  
Vol 83 (9) ◽  
pp. 1339-1346 ◽  
Author(s):  
Charles P Casey ◽  
Jeffrey B Johnson

The tolyl analogue of Shvo's hydroxycyclopentadienyl ruthenium hydride (4) efficiently transfers a hydride and proton to benzaldehyde or acetophenone to produce an alcohol. This reduction can be performed in toluene, methylene chloride, and THF. Reduction of benzaldehyde in toluene and methylene chloride occurs approximately 300 times faster than in THF at 0 °C. Reduction of acetophenone occurs between 75 and 150 times slower than benzaldehyde at 0 °C in each respective solvent. Despite the differences in rate, mechanistic studies have provided evidence for a similar concerted transfer of acidic and hydridic hydrogens in each solvent. Addition of water to THF led to further rate decrease coupled with an increase in the OH/D kinetic isotope effect and a decrease in the RuH/D kinetic isotope effect. Addition of excess alcohol to toluene or methylene chloride results in the significant retardation of the rate of reduction. The slower rate in THF and in the presence of alcohol is attributed to the stabilization of the ground state of ruthenium hydride 4 by hydrogen bonding and the additional energy required to break these bonds prior to carbonyl reduction.Key words: ruthenium hydrogenation catalysis, hydrogenation mechanism, kinetic isotope effects, ligand–metal bifunctional catalysis.


Sign in / Sign up

Export Citation Format

Share Document