Using degrees of rate control to improve selective n-butane oxidation over model MOF-encapsulated catalysts: sterically-constrained Ag3Pd(111)

2016 ◽  
Vol 188 ◽  
pp. 21-38 ◽  
Author(s):  
Sean T. Dix ◽  
Joseph K. Scott ◽  
Rachel B. Getman ◽  
Charles T. Campbell

Metal nanoparticles encapsulated within metal organic frameworks (MOFs) offer steric restrictions near the catalytic metal that can improve selectivity, much like in enzymes. A microkinetic model is developed for the regio-selective oxidation of n-butane to 1-butanol with O2 over a model for MOF-encapsulated bimetallic nanoparticles. The model consists of a Ag3Pd(111) surface decorated with a 2-atom-thick ring of (immobile) helium atoms which creates an artificial pore of similar size to that in common MOFs, which sterically constrains the adsorbed reaction intermediates. The kinetic parameters are based on energies calculated using density functional theory (DFT). The microkinetic model was analysed at 423 K to determine the dominant pathways and which species (adsorbed intermediates and transition states in the reaction mechanism) have energies that most sensitively affect the reaction rates to the different products, using degree-of-rate-control (DRC) analysis. This analysis revealed that activation of the C–H bond is assisted by adsorbed oxygen atoms, O*. Unfortunately, O* also abstracts H from adsorbed 1-butanol and butoxy as well, leading to butanal as the only significant product. This suggested to (1) add water to produce more OH*, thus inhibiting these undesired steps which produce OH*, and (2) eliminate most of the O2 pressure to reduce the O* coverage, thus also inhibiting these steps. Combined with increasing butane pressure, this dramatically improved the 1-butanol selectivity (from 0 to 95%) and the rate (to 2 molecules per site per s). Moreover, 40% less O2 was consumed per oxygen atom in the products. Under these conditions, a terminal H in butane is directly eliminated to the Pd site, and the resulting adsorbed butyl combines with OH* to give the desired 1-butanol. These results demonstrate that DRC analysis provides a powerful approach for optimizing catalytic process conditions, and that highly selectivity oxidation can sometimes be achieved by using a mixture of O2 and H2O as the oxidant. This was further demonstrated by DRC analysis of a second microkinetic model based on a related but hypothetical catalyst, where the activation energies for two of the steps were modified.

2021 ◽  
Vol 7 (18) ◽  
pp. eabg2580
Author(s):  
Weiren Cheng ◽  
Huabin Zhang ◽  
Deyan Luan ◽  
Xiong Wen (David) Lou

Conductive metal-organic framework (MOF) materials have been recently considered as effective electrocatalysts. However, they usually suffer from two major drawbacks, poor electrochemical stability and low electrocatalytic activity in bulk form. Here, we have developed a rational strategy to fabricate a promising electrocatalyst composed of a nanoscale conductive copper-based MOF (Cu-MOF) layer fully supported over synergetic iron hydr(oxy)oxide [Fe(OH)x] nanoboxes. Owing to the highly exposed active centers, enhanced charge transfer, and robust hollow nanostructure, the obtained Fe(OH)x@Cu-MOF nanoboxes exhibit superior activity and stability for the electrocatalytic hydrogen evolution reaction (HER). Specifically, it needs an overpotential of 112 mV to reach a current density of 10 mA cm−2 with a small Tafel slope of 76 mV dec−1. X-ray absorption fine structure spectroscopy combined with density functional theory calculations unravels that the highly exposed coordinatively unsaturated Cu1-O2 centers could effectively accelerate the formation of key *H intermediates toward fast HER kinetics.


2019 ◽  
Author(s):  
Isaiah R. Speight ◽  
Igor Huskić ◽  
Mihails Arhangelskis ◽  
Hatem M. Titi ◽  
Robin Stein ◽  
...  

Solid-state mechanochemistry revealed a novel polymorph of the mercury(II) imidazolate framework, based on square-grid (sql) topology layers. Reaction monitoring and periodic density functional theory calculations show that the sql-structure is of higher stability than the previously reported three-dimensional structure, with the unexpected stabilization of a lower dimensionality structure explained by contributions of weak interactions, which include short C-H···Hg contacts.


2021 ◽  
Vol 34 (10) ◽  
pp. 104005
Author(s):  
Kortney Almeida ◽  
Katerina Chagoya ◽  
Alan Felix ◽  
Tao Jiang ◽  
Duy Le ◽  
...  

Abstract Homogenous single-layer MoS2 films coated with sub-single layer amounts of gold are found to isolate the reaction of methanol with carbon monoxide, the fundamental step toward higher alcohols, from an array of possible surface reactions. Active surfaces were prepared from homogenous single-layer MoS2 films coated with sub-single layer amounts of gold. These gold atoms formed clusters on the MoS2 surface. A gas mixture of carbon monoxide (CO) and methanol (CH3OH) was partially converted to acetaldehyde (CH3CHO) under mild process conditions (308 kPa and 393 K). This carbonylation of methanol to a C2 species is a critical step toward the formation of higher alcohols. Density functional theory modeling of critical steps of the catalytic process identify a viable reaction pathway. Imaging and spectroscopic methods revealed that the single layer of MoS2 facilitated formation of nanoscale gold islands, which appear to sinter through Ostwald ripening. The formation of acetaldehyde by the catalytic carbonylation of methanol over supported gold clusters is an important step toward realizing controlled production of useful molecules from low carbon-count precursors.


Author(s):  
Zhen Feng ◽  
Zelin Yang ◽  
Xiaowen Meng ◽  
Fachuang Li ◽  
Zhanyong Guo ◽  
...  

The development of single-atom catalysts (SACs) for electrocatalytic nitrogen reduction reaction (NRR) remains a great challenge. Using density functional theory calculations, we design a new family of two-dimensional metal-organic frameworks...


2021 ◽  
Author(s):  
Tianli Han ◽  
Xirong Lin ◽  
Junfei Cai ◽  
Jinjin Li ◽  
Yajun Zhu ◽  
...  

Abstract Metal-organic-foams (MOFs)-derived nanostructures have received broad attention for secondary batteries. However, common strategies are focusing on the preparation of dispersive materials, which need complicated steps and some additives for making electrodes of batteries. Here, we develop a novel free-standing Co9S8 polyhedron array derived from ZIF-67, which grows on a three-dimensional carbon cloth for lithium-sulfur (Li-S) battery. The polar Co9S8 provides strong chemical binding to immobilize polysulfides, which enables efficiently suppressing of the shuttle effect. The free-standing S@Co9S8 polyhedron array-based cathode exhibits ultrahigh capacity of 1079 mAh g-1 after cycling 100 times at 0.1C, and long cycling life of 500 cycles at 1C, recoverable rate-performance and good temperature tolerance. Furthermore, the adsorption energies towards polysulfides are investigated by using density functional theory (DFT) calculations, which display a strong binding with polysulfides.


2020 ◽  
Vol 22 (14) ◽  
pp. 7577-7585 ◽  
Author(s):  
Florian R. Rehak ◽  
GiovanniMaria Piccini ◽  
Maristella Alessio ◽  
Joachim Sauer

Contrary to common believe, for eight adsorption cases, neither D3 or TS are an improvement compared to D2 nor van der Waals functionals or dDsC. Only the many body approaches are slightly better than D2(Ne) which uses Ne parameters for Mg2+ ions.


2020 ◽  
Vol 22 (24) ◽  
pp. 13622-13628 ◽  
Author(s):  
Veerachart Paluka ◽  
Thana Maihom ◽  
Michael Probst ◽  
Jumras Limtrakul

Dehydrogenation of ethanol to acetaldehyde with nitrous oxide (N2O) on Fe-supported MOF NU-1000 investigated by means of density functional calculations.


Sign in / Sign up

Export Citation Format

Share Document