Synthesis and reactivities of monofluoro acylboronates in chemoselective amide bond forming ligation with hydroxylamines

2016 ◽  
Vol 14 (1) ◽  
pp. 16-20 ◽  
Author(s):  
Hidetoshi Noda ◽  
Jeffrey W. Bode

Synthesis and reactivities of monofluoroacylboronates are described in the context of bioorganic chemistry and chemical ligation.

2018 ◽  
Vol 71 (9) ◽  
pp. 697
Author(s):  
Carlie L. Charron ◽  
Jade M. Cottam Jones ◽  
Craig A. Hutton

The condensation of N-mercaptomethyl amines and thioesters is a potential route to amides, via aminomethyl thioester intermediates, in a native chemical ligation type process followed by self-cleavage of the ‘mercaptomethyl’ auxiliary. This paper describes investigations towards the preparation of aminomethyl thioesters, and subsequent conversion into amides, from a three-component coupling of formaldehyde, a thioacid, and an amine. Our studies suggest that while such intermediates may be formed en route to amides, no advantages are offered over the direct reaction of the amine and thioacid precursors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunyun Ning ◽  
Shuaishuai Wang ◽  
Muzi Li ◽  
Jie Han ◽  
Chengjian Zhu ◽  
...  

AbstractDevelopment of catalytic amide bond-forming methods is important because they could potentially address the existing limitations of classical methods using superstoichiometric activating reagents. In this paper, we disclose an Umpolung amidation reaction of carboxylic acids with nitroarenes and nitroalkanes enabled by the triplet synergistic catalysis of FeI2, P(V)/P(III) and photoredox catalysis, which avoids the production of byproducts from stoichiometric coupling reagents. A wide range of carboxylic acids, including aliphatic, aromatic and alkenyl acids participate smoothly in such reactions, generating structurally diverse amides in good yields (86 examples, up to 97% yield). This Umpolung amidation strategy opens a method to address challenging regioselectivity issues between nucleophilic functional groups, and complements the functional group compatibility of the classical amidation protocols. The synthetic robustness of the reaction is demonstrated by late-stage modification of complex molecules and gram-scale applications.


2020 ◽  
Vol 24 (7) ◽  
pp. 1341-1349 ◽  
Author(s):  
Marion Erny ◽  
Marika Lundqvist ◽  
Jon H. Rasmussen ◽  
Olivier Ludemann-Hombourger ◽  
Frédéric Bihel ◽  
...  

2019 ◽  
Author(s):  
Yindi Jiang ◽  
Alessia Stornetta ◽  
Peter W. Villalta ◽  
Matthew R. Wilson ◽  
Paul D. Boudreau ◽  
...  

ABSTRACTCertain commensal and pathogenic bacteria produce colibactin, a small molecule genotoxin that causes interstrand cross-links in host cell DNA. Though colibactin has been found to alkylate DNA, the molecular basis for cross-link formation is unclear. Here, we report that the colibactin biosynthetic enzyme ClbL is an amide bond-forming enzyme that links aminoketone and β-keto thioester substrates in vitro and in vivo. The substrate specificity of ClbL strongly supports a role for this enzyme in terminating the colibactin NRPS-PKS assembly line. This transformation would incorporate two electrophilic cyclopropane warheads into the final natural product scaffold. Overall, this work provides a biosynthetic explanation for colibactin’s DNA crosslinking activity and paves the way for further study of its chemical structure.


2019 ◽  
Author(s):  
Marine Cargoet ◽  
Vincent Diemer ◽  
Laurent Raibaut ◽  
Elizabeth Lissy ◽  
Benoît Snella ◽  
...  

The bis(2-sulfanylethyl)amido (SEA)-mediated ligation has been introduced in 2010 as a novel chemoselective peptide bond forming reaction. SEA ligation is a useful reaction for protein total synthesis that is complementary to the native chemical ligation (NCL). In particular, SEA ligation proceeds efficiently in a wide range of pH, from neutral pH to pH 3-4. Thus, the pH can be chosen to optimize the solubility of the peptide segments or final product. It can be also chosen to facilitate the formation of difficult junctions, since the rate of SEA ligation increases significantly by decreasing the pH from 7.2 to 4.0. Here we describe a protocol for SEA ligation at pH 5.5 in the presence of 4-mercaptophenylacetic acid (MPAA) or at pH 4.0 in the presence of a newly developed diselenol catalyst. The protocols describe the formation of a valyl-cysteinyl peptide bond between two model peptides.<br>


2019 ◽  
Author(s):  
Jennifer Bouchenna ◽  
Magalie Sénéchal ◽  
Hervé Drobecq ◽  
Jérôme Vicogne ◽  
Oleg Melnyk

Aspartimide formation often complicates the solid phase synthesis of peptides. Much less discussed is the potential occurrence of this side-reaction during the coupling of peptide segments using chemoselective peptide bond forming reactions such as the native chemical ligation and extended methods. Here we describe how to manage this problem using bis(2-sulfenylethyl)amido (SEA)-mediated ligation and SUMO-2/SUMO-3 as protein targets.<br>


Synthesis ◽  
2020 ◽  
Vol 52 (21) ◽  
pp. 3231-3242
Author(s):  
Sylvain Laclef ◽  
Maria Kolympadi Marković ◽  
Dean Marković

The amide functionality is one of the most important and widely used groups in nature and in medicinal and industrial chemistry. Because of its importance and as the actual synthetic methods suffer from major drawbacks, such as the use of a stoichiometric amount of an activating agent, epimerization and low atom economy, the development of new and efficient amide bond forming reactions is needed. A number of greener and more effective strategies have been studied and developed. The transamidation of primary amides is particularly attractive in terms of atom economy and as ammonia is the single byproduct. This review summarizes the advancements in metal-catalyzed and organocatalyzed transamidation methods. Lewis and Brønsted acid transamidation catalysts are reviewed as a separate group. The activation of primary amides by promoter, as well as catalyst- and promoter-free protocols, are also described. The proposed mechanisms and key intermediates of the depicted transamidation reactions are shown.1 Introduction2 Metal-Catalyzed Transamidations3 Organocatalyzed Transamidations4 Lewis and Brønsted Acid Catalysis5 Promoted Transamidation of Primary Amides6 Catalyst- and Promoter-Free Protocols7 Conclusion


Sign in / Sign up

Export Citation Format

Share Document