Dispersion and distribution of bimetallic oxides in SBA-15, and their enhanced activity for reverse water gas shift reaction

2015 ◽  
Vol 2 (8) ◽  
pp. 741-748 ◽  
Author(s):  
Baowang Lu ◽  
Yiwen Ju ◽  
Takayuki Abe ◽  
Katsuya Kawamoto

Bimetallic oxides could be well distributed on the SBA-15 surface, and exhibited high catalytic perforation for RWGS reaction.

Author(s):  
Daiya Kobayashi ◽  
Hirokazu Kobayashi ◽  
Kohei Kusada ◽  
Tomokazu Yamamoto ◽  
Takaaki Toriyama ◽  
...  

We report PtW solid-solution alloy nanoparticles (NPs) as a reverse water-gas shift (RWGS) reaction catalyst for the first time. Atomic-level alloying of Pt and W significantly enhanced the RWGS reaction activity of Pt NPs.


Nanoscale ◽  
2019 ◽  
Vol 11 (35) ◽  
pp. 16677-16688 ◽  
Author(s):  
Yulian He ◽  
Ke R. Yang ◽  
Ziwei Yu ◽  
Zachary S. Fishman ◽  
Laura A. Achola ◽  
...  

We develop efficient synthetic methods to prepare various MnO2 structures and investigate their structure–property relationships as applied to the reverse Water Gas Shift (rWGS) reaction with a combination of experimental and theoretical tools.


RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 10285-10296
Author(s):  
Nicky Bogolowski ◽  
Beatriz Sánchez Batalla ◽  
Baekkyoung Shin ◽  
Jean-Francois Drillet

LSCrM, Ni3Sn2 and GDC20 powders show high activity and selectivity for the RWGS reaction.


Author(s):  
Shinya Mine ◽  
Taichi Yamaguchi ◽  
Kah Wei Ting ◽  
Zen Maeno ◽  
S. M. A. Hakim Siddiki ◽  
...  

The reverse water-gas shift (RWGS) reaction is a promising catalytic route for reducing CO2 emissions because its product, CO, is a key intermediate in various industrialized catalytic processes that produce...


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1076
Author(s):  
Lucy Idowu Ajakaiye Jensen ◽  
Sara Blomberg ◽  
Christian Hulteberg

Catalytic conversion of CO2 to CO using reverse water gas shift (RWGS) reaction is a key intermediate step for many CO2 utilization processes. RWGS followed by well-known synthesis gas conversion may emerge as a potential approach to convert CO2 to valuable chemicals and fuels. Nickel (Ni) based catalysts with ceria-zirconia (Ce-Zr) support can be used to tune the metal-support interactions, resulting in a potentially enhanced CO2 hydrogenation rate and elongation of the catalyst lifespan. The thermodynamics of RWGS reaction is favored at high temperature for CO2 conversion. In this paper the effect of Palladium (Pd) and Iridium (Ir) as promoters in the activity of 10 wt%Ni 2 wt%Pd 0.1wt%Ir/CeZrO2 catalyst for the reverse water gas shift reaction was investigated. RWGS was studied for different feed (CO2:H2) ratios. The new active interface between Ni, Pd and Ir particles is proposed to be an important factor in enhancing catalytic activity. 10 wt%Ni 2 wt%Pd 0.1 wt%Ir/CeZrO2 catalyst showed a better activity with CO2 conversion of 52.4% and a CO selectivity of 98% for H2:CO2 (1:1) compared to the activity of 10%Ni/CeZrO2 with CO2 conversion of 49.9% and a CO selectivity of 93%. The catalytic activity for different feed ratios using 10 wt%Ni 2 wt%Pd 0.1 wt%Ir/CeZrO2 were also studied. The use of palladium and iridium boosts the stability and life span of the Ni-based catalysts. This indicates that the catalyst could be used potentially to design RWGS reactors for CO2 utilization units.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 108270-108279 ◽  
Author(s):  
Zhaoru Cao ◽  
Ling Guo ◽  
Naying Liu ◽  
Xiaoli Zheng ◽  
Wenli Li ◽  
...  

The reverse water gas shift (RWGS) reaction catalyzed by a Rh–Mo6S8 cluster is investigated using density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document