Hierarchical NiMn2O4@CNT nanocomposites for high-performance asymmetric supercapacitors

RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 24607-24614 ◽  
Author(s):  
Honghong Nan ◽  
Wenqin Ma ◽  
Zhengxiang Gu ◽  
Baoyou Geng ◽  
Xiaojun Zhang

Miniaturized energy storage devices have attracted considerable research attention due to their promising applications in various smart electronic devices.

Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Cao ◽  
Yun Gong ◽  
Wenhao Wang ◽  
Mingzhou Chen ◽  
Junhe Yang ◽  
...  

Fiber-shaped supercapacitors (FSCs) are promising power sources for wearable electronic devices due to their small size, excellent flexibility and deformability. The performance of FSCs has been severely affected by the...


2021 ◽  
Author(s):  
Mengru Ding ◽  
Yuanduo Qu ◽  
Xueyu Zhang ◽  
Lianfeng Duan ◽  
Xuesong Li ◽  
...  

The increasing demand for high performance portable electronic devices has promoted the research of flexible energy storage devices, and various devices have been suggested and investigated.


RSC Advances ◽  
2016 ◽  
Vol 6 (34) ◽  
pp. 28970-28980 ◽  
Author(s):  
Afshin Pendashteh ◽  
Jesus Palma ◽  
Marc Anderson ◽  
Rebeca Marcilla

Hydrothermally synthesized NiCoMnO4 NPs showed a high capacitance of 510 F g−1 with high mass loaded electrodes (∼10 mg cm−2). Integrated with RGO NSs, their viability was testified for high-performance asymmetric supercapacitors.


Ionics ◽  
2021 ◽  
Author(s):  
Morteza Saghafi Yazdi ◽  
Seied Ali Hosseini ◽  
Zeynodin Karami ◽  
Ali Olamaee ◽  
Mohammad Abedini ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 372
Author(s):  
Liyang Lin ◽  
Susu Chen ◽  
Tao Deng ◽  
Wen Zeng

The metal oxides/graphene nanocomposites have great application prospects in the fields of electrochemical energy storage and gas sensing detection. However, rational synthesis of such materials with good conductivity and electrochemical activity is the topical challenge for high-performance devices. Here, SnO2/graphene nanocomposite is taken as a typical example and develops a universal synthesis method that overcome these challenges and prepares the oxygen-deficient SnO2 hollow nanospheres/graphene (r-SnO2/GN) nanocomposite with excellent performance for supercapacitors and gas sensors. The electrode r-SnO2/GN exhibits specific capacitance of 947.4 F g−1 at a current density of 2 mA cm−2 and of 640.0 F g−1 even at 20 mA cm−2, showing remarkable rate capability. For gas-sensing application, the sensor r-SnO2/GN showed good sensitivity (~13.8 under 500 ppm) and short response/recovering time toward methane gas. These performance features make r-SnO2/GN nanocomposite a promising candidate for high-performance energy storage devices and gas sensors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Hu ◽  
Xiaomin Tang ◽  
Qing Dai ◽  
Zhiqiang Liu ◽  
Huamin Zhang ◽  
...  

AbstractMembranes with fast and selective ions transport are highly demanded for energy storage devices. Layered double hydroxides (LDHs), bearing uniform interlayer galleries and abundant hydroxyl groups covalently bonded within two-dimensional (2D) host layers, make them superb candidates for high-performance membranes. However, related research on LDHs for ions separation is quite rare, especially the deep-going study on ions transport behavior in LDHs. Here, we report a LDHs-based composite membrane with fast and selective ions transport for flow battery application. The hydroxide ions transport through LDHs via vehicular (standard diffusion) & Grotthuss (proton hopping) mechanisms is uncovered. The LDHs-based membrane enables an alkaline zinc-based flow battery to operate at 200 mA cm−2, along with an energy efficiency of 82.36% for 400 cycles. This study offers an in-depth understanding of ions transport in LDHs and further inspires their applications in other energy-related devices.


Author(s):  
Longtao Ren ◽  
Qian Wang ◽  
Yajie Li ◽  
Cejun Hu ◽  
Yajun Zhao ◽  
...  

Rechargeable lithium-sulfur (Li–S) batteries are considered one of the most promising next-generation energy storage devices because of their high theoretical energy density. However, the dissolution of lithium polysulfides (LiPSs) in...


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


Sign in / Sign up

Export Citation Format

Share Document