Fabrication of earth-abundant Cu2ZnSn(S,Se)4 light absorbers by a sol–gel and selenization route for thin film solar cells

RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6562-6570 ◽  
Author(s):  
Fang Qin Zeng ◽  
Yan Qing Lai ◽  
Zi Li Han ◽  
Boon K. Ng ◽  
Zhi An Zhang ◽  
...  

A CZTSSe thin film solar cell was fabricated by a sol–gel method with an efficiency of 8.08%.

Optik ◽  
2013 ◽  
Vol 124 (21) ◽  
pp. 4876-4879 ◽  
Author(s):  
Fenglin Xian ◽  
Kaibo Miao ◽  
Xuecheng Bai ◽  
Yun Ji ◽  
Feier Chen ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (58) ◽  
pp. 33710-33715
Author(s):  
Haoyu Xu ◽  
Dongqiang Chen ◽  
Litao Xin ◽  
Heju Xu ◽  
Wei Yu

A suitable annealing temperature was found by adopting the sol–gel method to prepare silicon-based molybdenum sulfide film heterojunction solar cells.


2020 ◽  
Vol 17 (4) ◽  
pp. 527-533
Author(s):  
Mohsen Sajadnia ◽  
Sajjad Dehghani ◽  
Zahra Noraeepoor ◽  
Mohammad Hossein Sheikhi

Purpose The purpose of this study is to design and optimize copper indium gallium selenide (CIGS) thin film solar cells. Design/methodology/approach A novel bi-layer CIGS thin film solar cell based on SnS is designed. To improve the performance of the CIGS based thin film solar cell a tin sulfide (SnS) layer is added to the structure, as back surface field and second absorbing layer. Defect recombination centers have a significant effect on the performance of CIGS solar cells by changing recombination rate and charge density. Therefore, performance of the proposed structure is investigated in two stages successively, considering typical and maximum reported trap density for both CIGS and SnS. To achieve valid results, the authors use previously reported experimental parameters in the simulations. Findings First by considering the typical reported trap density for both SnS and CIGS, high efficiency of 36%, was obtained. Afterward maximum reported trap densities of 1 × 1019 and 5.6 × 1015 cm−3 were considered for SnS and CIGS, respectively. The efficiency of the optimized cell is 27.17% which is achieved in CIGS and SnS thicknesses of cell are 0.3 and 0.1 µm, respectively. Therefore, even in this case, the obtained efficiency is well greater than previous structures while the absorbing layer thickness is low. Originality/value Having results similar to practical CIGS solar cells, the impact of the defects of SnS and CIGS layers was investigated. It was found that affixing SnS between CIGS and Mo layers causes a significant improvement in the efficiency of CIGS thin-film solar cell.


2014 ◽  
Vol 1638 ◽  
Author(s):  
Hongtao Cui ◽  
Xiaolei Liu ◽  
Xiaojing Hao ◽  
Fangyang Liu ◽  
Ning Song ◽  
...  

ABSTRACTThe focus of this work is on back contact improvement for sputtered CZTS thin film solar cells. Three methods have been investigated including a thin Ag coating, a thin ZnO coating on the Mo back contact and rapid thermal annealing of the back contact. All of these methods have been found to reduce defects such as voids as well as secondary phases at the back contact region and inhibit the formation of MoS2. Consequently all the mothods effectively enhances Voc, Jsc, FF and therefore efficiency significantly.


2015 ◽  
Vol 17 (2) ◽  
pp. 1269-1275 ◽  
Author(s):  
Qingwen Tian ◽  
Lijian Huang ◽  
Wangen Zhao ◽  
Yanchun Yang ◽  
Gang Wang ◽  
...  

An aqueous solution deposited Cu2ZnSn(S,Se)4 thin film solar cell with a photoelectric conversion of 6.62% was fabricated.


2017 ◽  
Vol 10 (5) ◽  
pp. 1134-1141 ◽  
Author(s):  
Bofei Liu ◽  
Lisha Bai ◽  
Tiantian Li ◽  
Changchun Wei ◽  
Baozhang Li ◽  
...  

A highly efficient quadruple-junction silicon based thin-film solar cell with a remarkably high open-circuit voltage was demonstrated to inspire functional photoelectrical devices for environmental applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 77565-77571 ◽  
Author(s):  
Thi Hiep Nguyen ◽  
Wilman Septina ◽  
Shotaro Fujikawa ◽  
Feng Jiang ◽  
Takashi Harada ◽  
...  

A CZTS-based thin film solar cell with a powder conversion efficiency of 5.8% was obtained by using facile spray pyrolysis deposition followed by annealing.


2011 ◽  
Vol 685 ◽  
pp. 60-64 ◽  
Author(s):  
Shui Yang Lien ◽  
Meng Jia Yang ◽  
Yang Shih Lin ◽  
Chia Fu Chen ◽  
Po Hung Lin ◽  
...  

It is widely accepted that graded buffer layer between the p-layer and i-layer increase the efficiency of amorphous silicon solar cells. The open-circuit voltage (Voc), short current density (Jsc) and fill factor (FF) of the thin film solar cell are obviously increased. In the present study, hydrogenated amorphous silicon (a-Si:H) thin film solar cells have been fabricated by 27.12 MHz plasma enhanced chemical vapor deposition (PECVD). We discussed the three conditions at the p/i interface without buffer layer, buffer layer and graded buffer layer of thin film solar cells by TCAD software. The influences of the performance of the solar cell with the different buffer layer are investigated. The cell with graded buffer layer has higher efficiency compared with the cells without buffer layer and buffer layer. The graded buffer layer enhances the conversion efficiency of the solar cell by improving Vocand FF. It could be attributed to a reduction of interface recombination rate near the junction. The best performance of conversion efficiency (η)=8.57% (Voc=0.81 V, Jsc=15.46 mA/cm2, FF=68%) of the amorphous silicon thin film solar cell was achieved.


Sign in / Sign up

Export Citation Format

Share Document