First principles study of the adsorption and dissociation mechanisms of H2S on a TiO2anatase (001) surface

RSC Advances ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. 7941-7949 ◽  
Author(s):  
Naeem Shahzad ◽  
Akhtar Hussain ◽  
Naeem Mustafa ◽  
Nisar Ali ◽  
Mohammed Benali Kanoun ◽  
...  

Adsorption and dissociation mechanisms of H2S on a TiO2(001) surface were elucidated using first principles calculation based on the density functional theory.

Author(s):  
Pan Deng ◽  
Liang Li ◽  
Dachun Liu ◽  
Xiumin Chen ◽  
Wenlong Jiang

The adsorption and dissociation of phosgene (COCl2) molecule on three kinds of rutile TiO2(110) surface (Stoichiometric: TiO2-Sto; Oxygen defective: TiO2-Ov; Substoichiometric: TiO1.875) was investigated based on the density functional theory...


RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52449-52455 ◽  
Author(s):  
Qiang Zhao ◽  
Zheng Zhang ◽  
Xiaoping Ouyang

We investigated the effects of high pressure on the electronic structure and optical properties of a CsI crystal through a first-principles calculation method based on density functional theory.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yunmi Huang ◽  
Haijun Luo ◽  
Changkun Dong

Based on the density functional theory, the adsorption and decomposition of NOx (x = 1, 2) on Mo (110) surface are studied with first-principles calculations. Results show that the stable structures of NO2/Mo (110) are MoNO2 (T, μ1-N), MoNO2 (H, μ3-N, O, O′), MoNO2 (S, η2-O, O′), and MoNO2 (L, η2-O, O′). The corresponding adsorption energies for the structures are −3.83 eV, −3.40 eV, −2.81 eV, and −2.60 eV, respectively. Besides, the stable structures of NO/Mo (110) are MoNO (H, μ1-N), MoNO (H, μ2-N, O), and MoNO (H, η1-N) with the corresponding adsorption energies of −3.75 eV, −3.57 eV, and −3.01 eV, respectively. N and O atoms are easily adsorbed at the hollow sites on Mo (110) surfaces, and their adsorption energies reach −7.02 eV and −7.70 eV, respectively. The preferable decomposition process of MoNO2 (H, μ3-N, O, O′) shows that the first and second deoxidation processes need to overcome energy barriers of 0.11 eV and 0.64 eV, respectively. All these findings indicate that NO2 is relatively easy to dissociate on Mo (110) surface.


Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


2021 ◽  
Author(s):  
Lanjuan Zhou ◽  
Sujing Yu ◽  
Yan Yang ◽  
Qi Li ◽  
Tingting Li ◽  
...  

In this paper, the effects of five noble metals (Au, Pt, Pd, Ag, Ru) doped MoSe2 on improving gas sensing performance were predicted through density functional theory (DFT) based on...


Author(s):  
Wei-Feng Xie ◽  
Hao-Ran Zhu ◽  
Shi-Hao Wei

The structural evolutions and electronic properties of Au$_l$Pt$_m$ ($l$+$m$$\leqslant$10) clusters are investigated by using the first$-$principles methods based on density functional theory (DFT). We use Inverse design of materials by...


Author(s):  
Yogeshwaran Krishnan ◽  
Sateesh Bandaru ◽  
Niall J. English

A series of transition-metal-doped Fe1−xMxCo(PO4)4(010) and Fe3Co1−xMx(PO4)4(010) electro-catalyst surfaces (with M = Mn, Os, Ru, Rh and Ir) have been modelled via density-functional theory (DFT) to gauge their oxygen-evolution reactions (OER).


2014 ◽  
Vol 16 (27) ◽  
pp. 14096-14107 ◽  
Author(s):  
Bhaskar Chilukuri ◽  
Ursula Mazur ◽  
K. W. Hipps

Implication of dispersion interactions on geometric, adsorption and electronic properties of porphyrin monolayer on conductive surfaces using density functional theory.


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31968-31975 ◽  
Author(s):  
Shuai Zhao ◽  
Liguo Gao ◽  
Chunfeng Lan ◽  
Shyam S. Pandey ◽  
Shuzi Hayase ◽  
...  

In this work, we present a detailed first-principles investigation on the stoichiometric and oxygen-deficient structures of double perovskites, Sr2BMoO6 (B = Mg, Co and Ni), using the density functional theory (DFT) method.


Sign in / Sign up

Export Citation Format

Share Document