scholarly journals Electronic structure and optical properties of CsI under high pressure: a first-principles study

RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52449-52455 ◽  
Author(s):  
Qiang Zhao ◽  
Zheng Zhang ◽  
Xiaoping Ouyang

We investigated the effects of high pressure on the electronic structure and optical properties of a CsI crystal through a first-principles calculation method based on density functional theory.

RSC Advances ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. 7941-7949 ◽  
Author(s):  
Naeem Shahzad ◽  
Akhtar Hussain ◽  
Naeem Mustafa ◽  
Nisar Ali ◽  
Mohammed Benali Kanoun ◽  
...  

Adsorption and dissociation mechanisms of H2S on a TiO2(001) surface were elucidated using first principles calculation based on the density functional theory.


2021 ◽  
Author(s):  
Deepti Maikhuri ◽  
Jaiparkash Jaiparkash ◽  
Haider Abbas

Abstract We present a comprehensive first-principles study of the electronic structure of graphene sheet with periodic vacancy. We report the structural, electronic, and magnetic properties of the graphene sheet with periodic vacancy that possess 48 C & 28 H atoms. Computational analysis based on density functional theory predicts that the periodic vacancy can modulate the properties of graphene sheet. Results show that periodic vacancies lead to the manipulation of band gap & could be utilized to tailor the electronic properties of the sheet. Also, it is found that, the graphene sheet with periodic vacancy is non-magnetic in nature.


2017 ◽  
Vol 19 (42) ◽  
pp. 28928-28935 ◽  
Author(s):  
Ya Yang ◽  
Jihua Zhang ◽  
Shunbo Hu ◽  
Yabei Wu ◽  
Jincang Zhang ◽  
...  

First principles calculations based on density functional theory were performed to study the electronic structure and magnetic properties of β-Ga2O3 in the presence of cation vacancies.


RSC Advances ◽  
2014 ◽  
Vol 4 (96) ◽  
pp. 53570-53574 ◽  
Author(s):  
Yin Wei ◽  
Hongjie Wang ◽  
Xuefeng Lu ◽  
Jiangbo Wen ◽  
Min Niu ◽  
...  

Electronic structure and optical properties of silicon nitride adsorbed by rare earths are explored by density functional theory.


2016 ◽  
Vol 4 (42) ◽  
pp. 10082-10089 ◽  
Author(s):  
Xianping Chen ◽  
Xiang Sun ◽  
D. G. Yang ◽  
Ruishen Meng ◽  
Chunjian Tan ◽  
...  

The structure along with the electronic and optical properties of a SiGe/BN monolayer heterostructure were theoretically researched using density functional theory calculations.


RSC Advances ◽  
2020 ◽  
Vol 10 (25) ◽  
pp. 14714-14719
Author(s):  
T. K. Bijoy ◽  
P. Murugan ◽  
Vijay Kumar

We report the results of density functional theory calculations on the atomic and electronic structure of solids formed by assembling A2B2PN (A = Ge and Sn, B = Cl, Br, and I) inorganic double helices.


RSC Advances ◽  
2016 ◽  
Vol 6 (56) ◽  
pp. 50867-50873 ◽  
Author(s):  
Golibjon R. Berdiyorov ◽  
Mohamed El-Amine Madjet

Optoelectronic properties of penta-graphene, penta-SiC2 and penta-CN2 are studied using density functional theory. Penta-SiC2 shows enhanced electronic transport and optical properties compared to the other systems.


RSC Advances ◽  
2021 ◽  
Vol 11 (26) ◽  
pp. 16040-16050
Author(s):  
Ting Yu ◽  
He Zhang ◽  
Dan Li ◽  
Yanwu Lu

In this paper, we investigated the electronic and optical properties of silicene on GaAs(111) substrates (silicene/HGaAs) on the basis of first-principles density functional theory.


2021 ◽  
pp. X
Author(s):  
Hongbo TANG ◽  
Qiuyue LI ◽  
Jian ZHOU ◽  
Lihua XIAO ◽  
Ping PENG

Received 03 January 2020; accepted 17 June 2020 We have investigated the optical properties of La (0, 0.125, 0.250) doped YB6 by means of first-principles calculations within the framework of density functional theory. It was found that electronic and optical properties of YB6 crystals varied remarkably when Y atoms were replaced with La atoms. Furthermore, with increasing content of La in YB6 crystals from 12.5 % to 25 % reflectivity and absorption coefficient of near infrared light decreased obviously, while the transmittance was enhanced.


2018 ◽  
Vol 787 ◽  
pp. 9-15
Author(s):  
Xian Bin Zhang ◽  
Wen Jie Wu ◽  
Ning Kang Deng ◽  
Xu Yan Wei ◽  
Guan Qi Wang

The electronic structure and optical properties of GaP were calculated using generalized gradients in density functional theory. The Bonn effective charge, optical frequency dielectric constant and the LO-TO splitting value were calculated by density functional theory perturbation method.


Sign in / Sign up

Export Citation Format

Share Document