Facile synthesis of one-dimensional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries

2015 ◽  
Vol 3 (26) ◽  
pp. 13648-13652 ◽  
Author(s):  
Naiteng Wu ◽  
Hao Wu ◽  
Wei Yuan ◽  
Shengjie Liu ◽  
Jinyu Liao ◽  
...  

One-dimensional LiNi0.8Co0.15Al0.05O2 microrods are synthesized through chemical lithiation of mixed Ni, Co, and Al oxalate microrod. The rod-like morphology together with structural stability endows it with superior rate capability and cycle performance for highly reversible lithium storage.

RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 69790-69797 ◽  
Author(s):  
Lin Zhou ◽  
Huali Wu ◽  
Mijie Tian ◽  
Qiaoji Zheng ◽  
Chenggang Xu ◽  
...  

The LMNC-BO electrode presents an enhanced cycle performance, better rate capability and structural stability than bare LMNC.


2021 ◽  
Author(s):  
Ni Wen ◽  
Siyuan Chen ◽  
xiaolong Li ◽  
Ke Zhang ◽  
Jingjie Feng ◽  
...  

Transition metal oxides (TMOs) are prospective anode materials for lithium-ion batteries (LIBs) owing to their high theoretical specific capacity. Whereas, the inherent low conductivity of TMOs restricts its application. Given...


2016 ◽  
Vol 51 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Hongxun Yang ◽  
Yang Wang ◽  
Yu Nie ◽  
Shengnan Sun ◽  
Tongyi Yang

Co3O4 is a promising candidate as an anode material for the next generation lithium ion batteries because of its high theoretical storage capacity and energy density. However, the disadvantages of poor capacity retention caused by large volume changes during cycling and low rate capability due to its poor electronic conductivity frustrate its practical applications. We have developed a binary nanocomposite based on Co3O4 and porous carbon nanofibers synthesized via an electrospinning method followed by thermal treatment. As an anode for lithium ion batteries, the Co3O4/ porous carbon nanofibers composite exhibits a remarkably improved electrochemical performance in terms of lithium storage capacity (869.5 mAh g−1 at 0.1 C), high-initial Coulombic efficiency (73.8%), cycling stability (94.9% capacity retention at 50 cycles), and rate capability (403.6 mAh g−1 at 2 C at 25 cycles) compared to pure Co3O4. This improvement is attributed to the introduction of porous carbon nanofibers which could improve electrical conductivity of material and accommodate the volume expansion/contraction of Co3O4 nanoparticles during cycling.


RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24366-24372 ◽  
Author(s):  
Fengqi Lu ◽  
Qiang Chen ◽  
Yibin Wang ◽  
Yonghao Wu ◽  
Pengcheng Wei ◽  
...  

The free-standing CC@TiOxNy@SnS2 nanocomposites have been synthesized via two steps hydrothermal process and exhibited excellent lithium storage performance.


2019 ◽  
Vol 19 (1) ◽  
pp. 194-198 ◽  
Author(s):  
Wei Zhou ◽  
Yuxuan Mao ◽  
Mangen Tang ◽  
Lan Long ◽  
Han Chen ◽  
...  

2021 ◽  
pp. 2150031
Author(s):  
Hai Li ◽  
Chunxiang Lu

As anode material for lithium-ion batteries, graphite has the disadvantage of relatively low specific capacity. In this work, a simple yet effective strategy to overcome the disadvantages by using a composite of flake graphite (FG) and small-sized graphene (SG) has been developed. The FG/SG composite prepared by dispersing FG and SG (90:10 w/w) in ethanol and drying delivers much higher specific capacity than that of individual component except for improved rate capability. More surprisingly, FG/SG composite delivers higher reversible capacity than its theoretical value calculated according to the theoretical capacities of graphite and graphene. Therefore, a synergistic effect between FG and SG in lithium storage is clearly discovered. To explain it, we propose a model that abundant nanoscopic cavities were formed due to physical adhesion between FG and SG and could accommodate extra lithium.


2019 ◽  
Vol 953 ◽  
pp. 121-126
Author(s):  
Zhe Chen ◽  
Quan Fang Chen ◽  
Sha Ne Zhang ◽  
Guo Dong Xu ◽  
Mao You Lin ◽  
...  

High energy density and rechargeable lithium ion batteries are attracting widely interest in renewable energy fields. The preparation of the high performance materials for electrodes has been regarded as the most challenging and innovative aspect. By utilizing a facile combustion synthesis method, pure nanostructure LiNi0.5Mn1.5O4 cathode material for lithium ion batteries were successfully fabricated. The crystal phase of the samples were characterized by X-Ray Diffraction, and micro-morphology as well as electrochemistry properties were also evaluated using FE-SEM, electrochemical charge-discharge test. The result shows the fabricated LiNi0.5Mn1.5O4 cathode materials had outstanding crystallinity and near-spherical morphologies. That obtained LiNi0.5Mn1.5O4 samples delivered an initial discharge capacity of 137.2 mAhg-1 at the 0.1 C together with excellent cycling stability and rate capability as positive electrodes in a lithium cell. The superior electrochemical performance of the as-prepared samples are owing to nanostructure particles possessing the shorter diffusion path for Li+ transport, and the nanostructure lead to large contact area to effectively improve the charge/discharge properties and the rate property. It is demonstrated that the as-prepared nanostructure LiNi0.5Mn1.5O4 samples have potential as cathode materials of lithium-ion battery for future new energy vehicles.


Sign in / Sign up

Export Citation Format

Share Document