scholarly journals Structure elucidation of a complex CO2-based organic framework material by NMR crystallography

2016 ◽  
Vol 7 (7) ◽  
pp. 4379-4390 ◽  
Author(s):  
Julien Leclaire ◽  
Guillaume Poisson ◽  
Fabio Ziarelli ◽  
Gerard Pepe ◽  
Frédéric Fotiadu ◽  
...  

A three-dimensional structural model of a complex CO2-based organic framework made from high molecular weight, self-assembled, flexible and multi-functional oligomeric constituents has been determined de novo by solid-state NMR including DNP-enhanced experiments.

Biopolymers ◽  
2002 ◽  
Vol 65 (2) ◽  
pp. 158-168 ◽  
Author(s):  
Enrica Alberti ◽  
Simon M. Gilbert ◽  
Arthur S. Tatham ◽  
Peter R. Shewry ◽  
Akira Naito ◽  
...  

2017 ◽  
Vol 73 (3) ◽  
pp. 176-183 ◽  
Author(s):  
Raynald Giovine ◽  
Christophe Volkringer ◽  
Julien Trébosc ◽  
Jean-Paul Amoureux ◽  
Thierry Loiseau ◽  
...  

The metal–organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H2O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of 13C magnetization under 13C–27Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between 13C and 27Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM–RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these 13C–27Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, 13C–{27Al} SFAM–RESPDOR experiments allow an estimation of the average distance between the free ligands and the 27Al nuclei of the framework.


2013 ◽  
Vol 69 (12) ◽  
pp. i85-i86 ◽  
Author(s):  
Youssef Ben Smida ◽  
Abderrahmen Guesmi ◽  
Mohamed Faouzi Zid ◽  
Ahmed Driss

The title compound, trisodium dicobalt(II) (arsenate/phosphate) (diarsenate/diphosphate), was prepared by a solid-state reaction. It is isostructural with Na3Co2AsO4As2O7. The framework shows the presence of CoX22O12(X2 is statistically disordered with As0.95P0.05) units formed by sharing corners between Co1O6octahedra andX22O7groups. These units form layers perpendicular to [010]. Co2O6octahedra andX1O4(X1 = As0.54P0.46) tetrahedra form Co2X1O8chains parallel to [001]. Cohesion between layers and chains is ensured by theX22O7groups, giving rise to a three-dimensional framework with broad tunnels, running along thea- andc-axis directions, in which the Na+ions reside. The two Co2+cations, theX1 site and three of the seven O atoms lie on special positions, with site symmetries 2 andmfor the Co,mfor theX1, and 2 andm(× 2) for the O sites. One of two Na atoms is disordered over three special positions [occupancy ratios 0.877 (10):0.110 (13):0.066 (9)] and the other is in a general position with full occupancy. A comparison between structures such as K2CdP2O7, α-NaTiP2O7and K2MoO2P2O7is made. The proposed structural model is supported by charge-distribution (CHARDI) analysis and bond-valence-sum (BVS) calculations. The distortion of the coordination polyhedra is analyzed by means of the effective coordination number.


2022 ◽  
Author(s):  
Xiang Han ◽  
Tiantian Wu ◽  
Lanhui Gu ◽  
Dian Tian

A three-dimensional (3D) metal-organic framework containing Li-oxygen clusters, namely {[Li2(IPA)]·DMF}n (1) (H2IPA = isophthalic acid), has been constructed under solvothermal conditions. The Li-based MOF can be applied to lithium energy...


2016 ◽  
Vol 52 (45) ◽  
pp. 7186-7204 ◽  
Author(s):  
Sharon E. Ashbrook ◽  
David McKay

DFT calculations are an important tool in assigning and interpreting NMR spectra of solids: we discuss recent developments and their future potential in the context of NMR crystallography.


ChemBioChem ◽  
2007 ◽  
Vol 8 (5) ◽  
pp. 493-496 ◽  
Author(s):  
Prashant Agrawal ◽  
Suzanne Kiihne ◽  
Johan Hollander ◽  
Frans Hulsbergen ◽  
Mathias Hofmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document